## Biometrika Trust

# An Analysis of Variance Test for Normality (Complete Samples) 

Author(s): S. S. Shapiro and M. B. Wilk
Source: Biometrika, Vol. 52, No. 3/4 (Dec., 1965), pp. 591-611
Published by: Oxford University Press on behalf of Biometrika Trust
Stable URL: https://www.jstor.org/stable/2333709
Accessed: 09-01-2019 21:21 UTC


#### Abstract

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.


Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Biometrika Trust, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Biometrika

# An analysis of variance test for normality (complete samples) $\dagger$ 

By S. S. SHAPIRO and M. B. WILK<br>General Electric Co. and Bell Telephone Laboratories, Inc.

## 1. Introduction

The main intent of this paper is to introduce a new statistical procedure for testing a complete sample for normality. The test statistic is obtained by dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric estimate of variance. This ratio is both scale and origin invariant and hence the statistic is appropriate for a test of the composite hypothesis of normality.

Testing for distributional assumptions in general and for normality in particular has been a major area of continuing statistical research-both theoretically and practically. A possible cause of such sustained interest is that many statistical procedures have been derived based on particular distributional assumptions-especially that of normality. Although in many cases the techniques are more robust than the assumptions underlying them, still a knowledge that the underlying assumption is incorrect may temper the use and application of the methods. Moreover, the study of a body of data with the stimulus of a distributional test may encourage consideration of, for example, normalizing transformations and the use of alternate methods such as distribution-free techniques, as well as detection of gross peculiarities such as outliers or errors.

The test procedure developed in this paper is defined and some of its analytical properties described in §2. Operational information and tables useful in employing the test are detailed in §3 (which may be read independently of the rest of the paper). Some examples are given in §4. Section 5 consists of an extract from an empirical sampling study of the comparison of the effectiveness of various alternative tests. Discussion and concluding remarks are given in §6.

## 2. The $W$ test for normality (Complete samples)

### 2.1. Motivation and early work

This study was initiated, in part, in an attempt to summarize formally certain indications of probability plots. In particular, could one condense departures from statistical linearity of probability plots into one or a few 'degrees of freedom' in the manner of the application of analysis of variance in regression analysis?

In a probability plot, one can consider the regression of the ordered observations on the expected values of the order statistics from a standardized version of the hypothesized distribution-the plot tending to be linear if the hypothesis is true. Hence a possible method of testing the distributional assumption is by means of an analysis of variance type procedure. Using generalized least squares (the ordered variates are correlated) linear and higher-order models can be fitted and an $F$-type ratio used to evaluate the adequacy of the linear fit.

[^0]This approach was investigated in preliminary work. While some promising results were obtained, the procedure is subject to the serious shortcoming that the selection of the higher-order model is, practically speaking, arbitrary. However, research is continuing along these lines.

Another analysis of variance viewpoint which has been investigated by the present authors is to compare the squared slope of the probability plot regression line, which under the normality hypothesis is an estimate of the population variance multiplied by a constant, with the residual mean square about the regression line, which is another estimate of the variance. This procedure can be used with incomplete samples and has been described elsewhere (Shapiro \& Wilk, 1965b).

As an alternative to the above, for complete samples, the squared slope may be compared with the usual symmetric sample sum of squares about the mean which is independent of the ordering and easily computable. It is this last statistic that is discussed in the remainder of this paper.

### 2.2. Derivation of the $W$ statistic

Let $m^{\prime}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ denote the vector of expected values of standard normal order statistics, and let $V=\left(v_{i j}\right)$ be the corresponding $n \times n$ covariance matrix. That is, if $x_{1} \leqslant x_{2} \leqslant \ldots x_{n}$ denotes an ordered random sample of size $n$ from a normal distribution with mean 0 and variance 1 , then

$$
E(x)_{i}=m_{i} \quad(i=1,2, \ldots, n)
$$

and

$$
\operatorname{cov}\left(x_{i}, x_{j}\right)=v_{i j} \quad(i, j=1,2, \ldots, n)
$$

Let $y^{\prime}=\left(y_{1}, \ldots, y_{n}\right)$ denote a vector of ordered random observations. The objective is to derive a test for the hypothesis that this is a sample from a normal distribution with unknown mean $\mu$ and unknown variance $\sigma^{2}$.

Clearly, if the $\left\{y_{i}\right\}$ are a normal sample then $y_{i}$ may be expressed as

$$
y_{i}=\mu+\sigma x_{i} \quad(i=1,2, \ldots, n)
$$

It follows from the generalized least-squares theorem (Aitken, 1935; Lloyd, 1952) that the best linear unbiased estimates of $\mu$ and $\sigma$ are those quantities that minimize the quadratic form $(y-\mu 1-\sigma m)^{\prime} V^{-1}(y-\mu 1-\sigma m)$, where $1^{\prime}=(1,1, \ldots, 1)$. These estimates are, respectively,
and

$$
\begin{aligned}
& \hat{\mu}=\frac{m^{\prime} V^{-1}\left(m 1^{\prime}-1 m^{\prime}\right) V^{-1} y}{1^{\prime} V^{-1} 1 m^{\prime} V^{-1} m-\left(1^{\prime} V^{-1} m\right)^{2}} \\
& \hat{\sigma}=\frac{1^{\prime} V^{-1}\left(1 m^{\prime}-m 1^{\prime}\right) V^{-1} y}{1^{\prime} V^{-1} 1 m^{\prime} V^{-1} m-\left(1^{\prime} V^{-1} m\right)^{2}} .
\end{aligned}
$$

For symmetric distributions, $1^{\prime} V^{-1} m=0$, and hence

$$
\hat{\mu}=\frac{1}{n} \sum_{1}^{n} y_{i}=\bar{y}, \quad \text { and } \quad \hat{\sigma}=\frac{m^{\prime} V^{-1} y}{m^{\prime} V^{-1} m}
$$

Let

$$
S^{2}=\sum_{1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

denote the usual symmetric unbiased estimate of $(n-1) \sigma^{2}$.
The $W$ test statistic for normality is defined by

$$
W=\frac{R^{4} \hat{\sigma}^{2}}{C^{2} S^{2}}=\frac{b^{2}}{S^{2}}=\frac{\left(a^{\prime} y\right)^{2}}{S^{2}}=\left(\sum_{i=1}^{n} a_{i} y_{i}\right)^{2} / \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

where
and

$$
\begin{aligned}
& R^{2}=m^{\prime} V^{-1} m, \\
& C^{2}=m^{\prime} V^{-1} V^{-1} m, \\
& a^{\prime}=\left(a_{1}, \ldots, a_{n}\right)=\frac{m^{\prime} V^{-1}}{\left(m^{\prime} V^{-1} V^{-1} m\right)^{\frac{1}{2}}}
\end{aligned}
$$

Thus, $b$ is, up to the normalizing constant $C$, the best linear unbiased estimate of the slope of a linear regression of the ordered observations, $y_{i}$, on the expected values, $m_{i}$, of the standard normal order statistics. The constant $C$ is so defined that the linear coefficients are normalized.

It may be noted that if one is indeed sampling from a normal population then the numerator, $b^{2}$, and denominator, $S^{2}$, of $W$ are both, up to a constant, estimating the same quantity, namely $\sigma^{2}$. For non-normal populations, these quantities would not in general be estimating the same thing. Heuristic considerations augmented by some fairly extensive empirical sampling results (Shapiro \& Wilk, 1964a) using populations with a wide range of $\sqrt{ } \beta_{1}$ and $\beta_{2}$ values, suggest that the mean values of $W$ for non-null distributions tends to shift to the left of that for the null case. Further it appears that the variance of the null distribution of $W$ tends to be smaller than that of the non-null distribution. It is likely that this is due to the positive correlation between the numerator and denominator for a normal population being greater than that for non-normal populations.

Note that the coefficients $\left\{a_{i}\right\}$ are just the normalized 'best linear unbiased' coefficients tabulated in Sarhan \& Greenberg (1956).

## 2•3. Some analytical properties of $W$

Lemma 1. $W$ is scale and origin invariant
Proof. This follows from the fact that for normal (more generally symmetric) distributions,

$$
-a_{i}=a_{n-i+1}
$$

Corollary 1. W has a distribution which depends only on the sample size $n$, for samples from a normal distribution.

Corollary 2. $W$ is statistically independent of $S^{2}$ and of $\bar{y}$, for samples from a normal distribution.

Proof. This follows from the fact that $\bar{y}$ and $S^{2}$ are sufficient for $\mu$ and $\sigma^{2}$ (Hogg \& Craig, 1956).

Corollary 3. $E W^{r}=E b^{2 r} / E S^{2 r}$, for any $r$.
Lemma 2. The maximum value of $W$ is 1 .
Proof. Assume $\bar{y}=0$ since $W$ is origin invariant by Lemma 1. Hence

$$
W=\left[\sum_{i} a_{i} y_{i}\right]^{2} / \sum_{i} y_{i}^{2}
$$

Since

$$
\left(\sum_{i} a_{i} y_{i}\right)^{2} \leqslant \sum_{i} a_{i}^{2} \sum_{i} y_{i}^{2}=\sum_{i} y_{i}^{2},
$$

because $\sum_{i} a_{i}^{2}=a^{\prime} a=1$, by definition, then $W$ is bounded by 1 . This maximum is in fact achieved when $y_{i}=\eta a_{i}$, for arbitrary $\eta$.

Lemma 3. The minimum value of $W$ is $n a_{1}^{2} /(n-1)$.

Proof. $\dagger$ (Due to C.L. Mallows.) Since $W$ is scale and origin invariant, it suffices to consider the maximization of $\sum_{i=1}^{n} y_{i}^{2}$ subject to the constraints $\Sigma y_{i}=0, \Sigma a_{i} y_{i}=1$. Since this is a convex region and $\Sigma y_{i}^{2}$ is a convex function, the maximum of the latter must occur at one of the $(n-1)$ vertices of the region. These are

$$
\begin{aligned}
& \left(\frac{(n-1)}{n a_{1}}, \frac{-1}{n a_{1}}, \ldots \frac{-1}{n a_{1}}\right) \\
& \left(\frac{n-2}{n\left(a_{1}+a_{2}\right)}, \frac{(n-2)}{n\left(a_{1}+a_{2}\right)}, \frac{-2}{n\left(a_{1}+a_{2}\right)}, \ldots, \frac{-2}{n\left(a_{1}+a_{2}\right)}\right) \\
& \vdots \\
& \left(\frac{1}{n\left(a_{1}+\ldots+a_{n-1}\right.}, \frac{1}{n\left(a_{1}+\ldots+a_{n-1}\right)}, \ldots, \frac{-(n-1)}{n\left(a_{1}+\ldots+a_{n-1}\right)}\right) .
\end{aligned}
$$

It can now be checked numerically, for the values of the specific coefficients $\left\{a_{i}\right\}$, that the maximum of $\sum_{i=1}^{n} y_{1}^{2}$ occurs at the first of these points and the corresponding minimum value of $W$ is as given in the Lemma.

Lemma 4. The half and first moments of $W$ are given by
and

$$
\begin{aligned}
E W^{\frac{1}{2}} & =\frac{R^{2} \Gamma\left\{\frac{1}{2}(n-1)\right\}}{C \Gamma\left(\frac{1}{2} n\right) \sqrt{ } 2} \\
E W & =\frac{R^{2}\left(R^{2}+1\right)}{C^{2}(n-1)},
\end{aligned}
$$

where $R^{2}=m^{\prime} V^{-1} m$, and $C^{2}=m^{\prime} V^{-1} V^{-1} m$.
Proof. Using Corollary 3 of Lemma 1,

$$
E W^{\frac{1}{2}}=E b / E S \quad \text { and } \quad E W=E b^{2} / E S^{2}
$$

Now,

$$
E S=\sigma \sqrt{ } 2 \Gamma\left(\frac{n}{2}\right) / \Gamma\left(\frac{n-1}{2}\right) \quad \text { and } \quad E S^{2}=(n-1) \sigma^{2}
$$

From the general least squares theorem (see e.g. Kendall \& Stuart, vol. II (1961)),
and

$$
\begin{aligned}
E b & =\frac{R^{2}}{C} E \hat{\sigma}=\frac{R^{2}}{C} \sigma \\
E b^{2} & =\frac{R^{4}}{C^{2}} E \hat{\sigma}^{2}=\frac{R^{4}}{C^{2}}\left\{\operatorname{var}(\hat{\sigma})+(E \hat{\sigma})^{2}\right\} \\
& =\sigma^{2} R^{2}\left(R^{2}+1\right) / C^{2}
\end{aligned}
$$

since $\operatorname{var}(\hat{\sigma})=\sigma^{2} / m^{\prime} V^{-1} m=\sigma^{2} / R^{2}$, and hence the results of the lemma follow.
Values of these moments are shown in Fig. 1 for sample sizes $n=3(1) 20$.
Lemma 5. A joint distribution involving $W$ is defined by

$$
h\left(W, \theta_{2}, \ldots, \theta_{n-2}\right)=K W^{-\frac{1}{2}}(1-W)^{\frac{1}{2}(n-4)} \cos ^{n-4} \theta_{2} \ldots \cos \theta_{n-3},
$$

over a region $T$ on which the $\theta_{i}$ 's and $W$ are not independent, and where $K$ is a constant.
$\dagger$ Lemma 3 was conjectured intuitively and verified by certain numerical studies. Subsequently the above proof was given by C. L. Mallows.

Proof. Consider an orthogonal transformation $B$ such that $y=B u$, where

$$
u_{1}=\sum_{i=1}^{n} y_{i} / \sqrt{ } n \quad \text { and } \quad u_{2}=\prod_{i=1}^{n} a_{i} y_{i}=b .
$$

The ordered $y_{i}$ 's are distributed as

$$
n!\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{1}{2} n} \exp \left\{-\frac{1}{2} \sum_{i}\left(\frac{y_{i}-\mu}{\sigma}\right)^{2}\right\} \quad\left(-\infty<y_{1}<\ldots<y_{n}<\infty\right) .
$$

After integrating out, $u_{1}$, the joint density for $u_{2}, \ldots, u_{n}$ is

$$
K^{*} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=2}^{n} u_{i}^{2}\right\}
$$

over the appropriate region $T^{*}$. Changing to polar co-ordinates such that

$$
u_{2}=\rho \sin \theta_{1}, \text { etc },
$$

and then integrating over $\rho$, yields the joint density of $\theta_{1}, \ldots, \theta_{n-2}$ as

$$
K^{* *} \cos ^{n-3} \theta_{1} \cos ^{n-4} \theta_{2} \ldots \cos \theta_{n-3}
$$

over some region $T^{* *}$.
From these various transformations

$$
W=\frac{b^{2}}{S^{2}}=\frac{u_{2}^{2}}{\sum_{i=1}^{n} u_{i}^{2}}=\frac{\rho^{2} \sin ^{2} \theta_{1}}{\rho^{2}}=\sin ^{2} \theta_{1},
$$

from which the lemma follows. The $\theta_{i}$ 's and $W$ are not independent, they are restricted in the sample space $T$.


Fig. 1. Moments of $W, E\left(W^{r}\right), n=3(1) 20, r=\frac{1}{2}$, 1 .
Corollary 4. For $n=3$, the density of $W$ is

$$
\frac{3}{\pi}(1-W)^{-\frac{1}{2}} W^{-\frac{1}{2}}, \quad \frac{3}{4} \leqslant W \leqslant 1 .
$$

Note that for $n=3$, the $W$ statistic is equivalent (up to a constant multiplier) to the statistic (range/standard deviation) advanced by David, Hartley \& Pearson (1954) and the result of the corollary is essentially given by Pearson \& Stephens (1964).

It has not been possible, for general $n$, to integrate out of the $\theta_{i}$ 's of Lemma 5 to obtain an explicit form for the distribution of $W$. However, explicit results have also been given for $n=4$, Shapiro (1964).

### 2.4. Approximations associated with the $W$ test

The $\left\{a_{i}\right\}$ used in the $W$ statistic are defined by

$$
a_{i}=\sum_{j=1}^{n} m_{j} v^{i j} / C \quad(j=1,2, \ldots, n),
$$

where $m_{j}, v_{i j}$ and $C$ have been defined in $\S 2 \cdot 2$. To determine the $a_{i}$ directly it appears necessary to know both the vector of means $m$ and the covariance matrix $V$. However, to date, the elements of $V$ are known only up to samples of size 20 (Sarhan \& Greenberg, 1956). Various approximations are presented in the remainder of this section to enable the use of $W$ for samples larger than 20.

By definition,

$$
a=\frac{m^{\prime} V^{-1}}{\left(m^{\prime} V^{-1} V^{-1} m\right)^{\frac{1}{2}}}=\frac{m^{\prime} V^{-1}}{C}
$$

is such that $a^{\prime} a=1$. Let $a^{*}=m^{\prime} V^{-1}$, then $C^{2}=a^{*^{\prime}} a^{*}$. Suggested approximations are

$$
\hat{a}_{i}^{*}=2 m_{i} \quad(i=2,3, \ldots, n-1),
$$

and

$$
\hat{a}_{1}^{2}=\hat{a}_{n}^{2}= \begin{cases}\frac{\Gamma\left(\frac{1}{2} n\right)}{\sqrt{2 \Gamma\left\{\frac{1}{2}(n+1)\right\}}} & (n \leqslant 20) \\ \frac{\Gamma\left\{\frac{1}{2}(n+1)\right\}}{\sqrt{ } 2 \Gamma\left(\frac{1}{2} n+1\right)} & (n>20)\end{cases}
$$

A comparison of $a_{i}^{*}$ (the exact values) and $\hat{a}_{i}^{*}$ for various values of $i \neq 1$ and $n=5,10$, 15, 20 is given in Table 1. (Note $a_{i}=-a_{n-i+1}$.) It will be seen that the approximation is generally in error by less than $1 \%$, particularly as $n$ increases. This encourages one to trust the use of this approximation for $n>20$. Necessary values of the $m_{i}$ for this approximation are available in Harter (1961).

Table 1. Comparison of $\left|a_{i}^{*}\right|$ and $\left|\hat{a}_{i}^{*}\right|=\left|2 m_{i}\right|$, for selected values of $i(\neq 1)$ and $n$

| $n$ | $i=$ | 2 | 3 | 4 | 5 | 8 | 10 |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Exact | 1.014 | 0.0 | - | - | - | - |
|  | Approx. | 0.990 | 0.0 | - | - | - | - |
| 10 | Exact | 2.035 | 1.324 | 0.757 | 0.247 | - | - |
|  | Approx. | 2.003 | 1.312 | 0.752 | 0.245 | - | - |
| 15 | Exact | 2.530 | 1.909 | 1.437 | 1.036 | 0.0 | - |
|  | Approx. | 2.496 | 1.895 | 1.430 | 1.031 | 0.0 | - |
| 20 | Exact | 2.849 | 2.277 | 1.850 | 1.496 | 0.631 | 0.124 |
|  | Approx. | 2.815 | 2.262 | 1.842 | 1.491 | 0.630 | 0.124 |

A comparison of $a_{1}^{2}$ and $\hat{a}_{1}^{2}$ for $n=6(1) 20$ is given in Table 2. While the errors of this approximation are quite small for $n \leqslant 20$, the approximation and true values appear to cross over at $n=19$. Further comparisons with other approximations, discussed below, suggested the changed formulation of $\hat{a}_{1}^{2}$ for $n>20$ given above.

Table 2. Comparison of $a_{1}^{2}$ and $\hat{a}_{1}^{2}$

| $n$ | Exact | Approximate | $n$ | Exact | Approximate |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $0 \cdot 414$ | $0 \cdot 426$ | 13 | $0 \cdot 287$ | $0 \cdot 283$ |
| 7 | $\cdot 388$ | $\cdot 392$ | 14 | $\cdot 276$ | $\cdot 272$ |
| 8 | $\cdot 366$ | $\cdot 365$ | 15 | $\cdot 265$ | $\cdot 261$ |
| 9 | $\cdot 347$ | $\cdot 343$ | 16 | $\cdot 256$ | $\cdot 254$ |
| 10 | $\cdot 329$ | $\cdot 324$ | 17 | $\cdot 247$ | $\cdot 245$ |
| 11 | $\cdot 314$ | $\cdot 308$ | 18 | $\cdot 239$ | $\cdot 237$ |
| 12 | $\cdot 300$ | $\cdot 295$ | 19 | $\cdot 231$ | $\cdot 231$ |
|  |  |  | 20 | $\cdot 224$ | $\cdot 226$ |



Fig. 2. Plot of $C^{2}=m^{\prime} V^{-1} V^{-1} m$ and $R^{2}=m^{\prime} V^{-1} m$ as functions of the sample size $n$.
What is required for the $W$ test are the normalized coefficients $\left\{a_{i}\right\}$. Thus $\hat{a}_{1}^{2}$ is directly usable but the $\hat{a}_{i}^{*}(i=2, \ldots, n-1)$, must be normalized by division by $C=\left(m^{\prime} V^{-1} V^{-1} m\right)^{\frac{1}{2}}$.
A plot of the values of $C^{2}$ and of $R^{2}=m^{\prime} V^{-1} m$ as a function of $n$ is given in Fig. 2. The linearity of these may be summarized by the following least-squares equations:

$$
C^{2}=-2 \cdot 722+4 \cdot 083 n
$$

which gave a regression mean square of $7331 \cdot 6$ and a residual mean square of 0.0186 , and

$$
R^{2}=-2 \cdot 411+1 \cdot 981 n
$$

with a regression mean square of $1725 \cdot 7$ and a residual mean square of $0 \cdot 0016$.

These results encourage the use of the extrapolated equations to estimate $C^{2}$ and $R^{2}$ for higher values of $n$.

A comparison can now be made between values of $C^{2}$ from the extrapolation equation and from $\sum_{1}^{n} \hat{a}_{i}^{* 2}$, using

$$
\hat{a}_{1}^{* 2}=\frac{\hat{a}_{1}^{2}}{1-2 \hat{a}_{1}^{2}} \sum_{2}^{n-1} \hat{a}_{i}^{* 2}
$$

For the case $n=30$, these give values of $119 \cdot 77$ and $120 \cdot 47$, respectively. This concordance of the independent approximations increases faith in both.

Plackett (1958) has suggested approximations for the elements of the vector $a$ and $R^{2}$. While his approximations are valid for a wide range of distributions and can be used with censored samples, they are more complex, for the normal case, than those suggested above. For the normal case his approximations are

$$
\begin{aligned}
& \tilde{a}_{j}^{*}=n m_{j}\left[F\left(m_{j+1}\right)-F\left(m_{j-1}\right)\right] \quad(j=2,3, \ldots, n-1), \\
& \tilde{a}_{j}^{*}=n\left\{\frac{m_{j} f\left(m_{j}\right)^{2}}{F\left(m_{j}\right)}+m_{j}^{2} f\left(m_{j}\right)-f\left(m_{j}\right)+m_{j}\left[F\left(m_{j+1}\right)-F\left(m_{j}\right)\right]\right\} \quad(j=1),
\end{aligned}
$$

where

$$
\begin{aligned}
F\left(m_{j}\right) & =\text { cumulative distribution evaluated at } m_{j}, \\
f\left(m_{j}\right) & =\text { density function evaluated at } m_{j},
\end{aligned}
$$

and

$$
\tilde{a}_{1}^{*}=-\tilde{a}_{n}^{*}
$$

Plackett's approximation to $R^{2}$ is

$$
\widetilde{R}^{2}=2\left\{\frac{m_{1}^{2} f\left(m_{1}\right)^{2}}{F\left(m_{1}\right)}+m_{1}^{3} f\left(m_{1}\right)+m_{1} f\left(m_{1}\right)-2 F\left(m_{1}\right)+1\right\} .
$$

Plackett's $\tilde{a}_{i}^{*}$ approximations and the present $\hat{a}_{i}^{*}$ approximations are compared with the exact values, for sample size 20 , in Table 3. In addition a consistency comparison of the two approximations is given for sample size 30 . Plackett's result for $a_{1}(n=20)$ was the only case where his approximation was closer to the true value than the simpler approximations suggested above. The differences in the two approximations for $a_{1}$ were negligible, being less than $0.5 \%$. Both methods give good approximations, being off no more than three units in the second decimal place. The comparison of the two methods for $n=30$ shows good agreement, most of the differences being in the third decimal place. The largest discrepancy occurred for $i=2$; the estimates differed by six units in the second decimal place, an error of less than $2 \%$.

The two methods of approximating $R^{2}$ were compared for $n=20$. Plackett's method gave a value of 36.09 , the method suggested above gave a value of 37.21 and the true value was $37 \cdot 26$.

The good practical agreement of these two approximations encourages the belief that there is little risk in reasonable extrapolations for $n>20$. The values of constants, for $n>20$, given in $\S 3$ below, were estimated from the simple approximations and extrapolations described above.

As a further internal check the values of $a_{n}, a_{n-1}$ and $a_{n-4}$ were plotted as a function of $n$ for $n=3(1) 50$. The plots are shown in Fig. 3 which is seen to be quite smooth for each of the three curves at the value $n=20$. Since values for $n \leqslant 20$ are 'exact' the smooth transition lends credence to the approximations for $n>20$.

Table 3. Comparison of approximate values of $a^{*}=m^{\prime} V^{-1}$
$n$

20

30

Present approx.

| -4.223 | -4.2013 |
| :--- | :--- |
| -2.815 | -2.8494 |
| -2.262 | -2.2765 |
| -1.842 | -1.8502 |
| -1.491 | -1.4960 |
| -1.181 | -1.1841 |
| -0.897 | -0.8990 |
| -0.630 | -0.6314 |
| -0.374 | -0.3784 |
| -0.124 | -0.1243 |

$-4.655$
$-3 \cdot 231$
$-2.730$
$-2.357$
$-2.052$
$-1.78$
$-1.553$
$-1.338$
$-1 \cdot 137$
$-0.947$
$-0.765$
$-0.589$
$-0.418$
$-0.249$
$-0.083$

Exact
$-4.2013$
$-2.2765$
$-1.8502$
$-1 \cdot 1841$
$-0.8990$
$-0.1243$
-
-
-
-
—
-
—

Plackett
$-4 \cdot 215$
$-2.764$
$-2.237$
$-1.820$
$-1.476$
$-1 \cdot 169$
$-0.887$
$-0.622$
$-0.370$
$-0 \cdot 123$
$-4 \cdot 671$
$-3 \cdot 170$
$-2 \cdot 768$
$-2 \cdot 369$
$-2.013$
$-1.760$
$-1.528$
$-1.334$
$-1.132$
$-0.941$
$-0.759$
$-0.582$
$-0.413$
$-0.249$
$-0.082$


Fig. 3. $a_{i}$ plotted as a function of sample size, $n=2(1) 50$, for $i=n, n-1, n-4(n>8)$.


Fig. 4. Empirical c.d.f. of $W$ for $n=5,10,15,20,35,50$.


Fig. 5. Selected empirical percentage points of $W, n=3(1) 50$.

Table 4. Some theoretical moments $\left(\mu_{i}\right)$ and Monte Carlo moments $\left(\hat{\mu}_{i}\right)$ of $W$

| $n$ | $\mu_{\frac{1}{2}}$ | $\hat{\mu}_{\frac{1}{2}}$ | $\mu_{1}$ | $\hat{\mu}_{1}$ | $\hat{\mu}_{2}$ | $\hat{\mu}_{3} / \hat{\mu}_{2}^{\frac{3}{2}}$ | $\hat{\mu}_{4} / \hat{\mu}_{2}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.9549 | 0.9547 | 0.9135 | 0.9130 | 0.005698 | -0.5930 | $2 \cdot 3748$ |
| 4 | -9486 | . 9489 | . 9012 | . 9019 | -005166 | -.8944 | $3 \cdot 7231$ |
| 5 | -9494 | . 9491 | . 9026 | . 9021 | -004491 | - .8176 | $7 \cdot 8126$ |
| 6 | 0.9521 | 0.9525 | 0.9072 | 0.9082 | $0 \cdot 003390$ | $-1 \cdot 1790$ | $5 \cdot 4295$ |
| 7 | -9547 | . 9545 | . 9123 | . 9120 | -002995 | -1.3229 | $6 \cdot 4104$ |
| 8 | -9574 | . 9575 | . 9174 | . 9175 | -002470 | -1.3841 | $7 \cdot 1092$ |
| 9 | . 9600 | . 9596 | . 9221 | . 9215 | -002293 | -1.5987 | $8 \cdot 4482$ |
| 10 | . 9622 | . 9620 | . 9264 | . 9260 | -001972 | -1.6655 | $9 \cdot 2812$ |
| 11 | 0.9643 | 0.9639 | 0.9303 | 0.9295 | $0 \cdot 001717$ | -1.7494 | 11.0547 |
| 12 | . 9661 | . 9661 | . 9337 | . 9338 | -001483 | -1.7744 | 11.9185 |
| 13 | -9678 | . 9678 | . 9369 | . 9369 | -001316 | -1.7581 | 13.0769 |
| 14 | -9692 | . 9693 | . 9398 | . 9399 | . 001168 | -1.9025 | 14.0568 |
| 15 | . 9706 | . 9705 | . 9424 | -9422 | $\cdot 001023$ | -1.8876 | 16.7383 |
| 16 | 0.9718 | 0.9717 | $0 \cdot 9447$ | 0.9445 | $0 \cdot 000964$ | -1.7968 | $17 \cdot 6669$ |
| 17 | . 9730 | . 9730 | . 9470 | . 9470 | -000823 | -1.9468 | $22 \cdot 1972$ |
| 18 | . 9741 | . 9741 | . 9491 | . 9492 | -000810 | -2.1391 | 24.7776 |
| 19 | . 9750 | . 9750 | . 9508 | . 9509 | -000711 | -2.1305 | $29 \cdot 7333$ |
| 20 | . 9757 | . 9760 | . 9523 | . 9527 | -000651 | -2.2761 | 32.5906 |
| 21 | - | 0.9771 | - | 0.9549 | $0 \cdot 000594$ | -2.2827 | 36.0382 |
| 22 | - | . 9776 | - | . 9558 | -000568 | -2.3984 | $44 \cdot 5617$ |
| 23 | - | . 9782 | - | . 9570 | -000504 | $-2 \cdot 1862$ | $40 \cdot 7507$ |
| 24 | - | -9787 | - | . 9579 | -000504 | $-2 \cdot 3517$ | $43 \cdot 4926$ |
| 25 | - | . 9789 | - | . 9584 | -000458 | $-2 \cdot 3448$ | $46 \cdot 3318$ |
| 26 | - | 0.9796 | - | $0 \cdot 9598$ | $0 \cdot 000421$ | -2.4978 | 58.9446 |
| 27 | - | . 9801 | - | -9607 | -000404 | -2.5903 | $60 \cdot 5200$ |
| 28 | - | . 9805 | - | . 9615 | -000382 | -2.6964 | $64 \cdot 1702$ |
| 29 | - | . 9810 | - | . 9624 | -000369 | -2.6090 | 68.9591 |
| 30 | - | . 9811 | - | . 9626 | -000344 | -2.7288 | $71 \cdot 7714$ |
| 31 | - | 0.9816 | - | $0 \cdot 9636$ | $0 \cdot 000336$ | -2.7997 | $77 \cdot 4744$ |
| 32 | - | . 9819 | - | . 9642 | -000326 | $-2 \cdot 6900$ | $76 \cdot 8384$ |
| 33 | - | .9823 | - | . 9650 | -000308 | -3.0181 | $93 \cdot 2496$ |
| 34 | - | . 9825 | - | . 9654 | -000293 | $-3.0166$ | $100 \cdot 4419$ |
| 35 | - | . 9827 | - | . 9658 | -000268 | $-2.8574$ | 108.5077 |
| 36 | - | 0.9829 | - | $0 \cdot 9662$ | $0 \cdot 000264$ | -2.7965 | 91.7985 |
| 37 | - | . 9833 | - | . 9670 | -000253 | $-3 \cdot 1566$ | $120 \cdot 0005$ |
| 38 | - | . 9837 | - | . 9677 | -000235 | -3.0679 | 118.2513 |
| 39 | - | . 9837 | - | . 9678 | -000239 | -3.3283 | 134-3110 |
| 40 | - | . 9839 | - | -9682 | -000229 | -3.1719 | 136.4787 |
| 41 | - | 0.9840 | - | 0.9684 | $0 \cdot 000227$ | -3.0740 | 129.9604 |
| 42 | - | . 9844 | - | . 9691 | -000212 | -3.2885 | $136 \cdot 3814$ |
| 43 | - | . 9846 | - | . 9694 | -000196 | -3.2646 | $151 \cdot 7350$ |
| 44 | - | . 9846 | - | . 9695 | -000193 | -3.0803 | $140 \cdot 2724$ |
| 45 | - | . 9849 | - | . 9701 | $\cdot 000192$ | -3.1645 | 137-2297 |
| 46 | - | 0.9850 | - | 0.9703 | $0 \cdot 000184$ | $-3 \cdot 3742$ | 176.0635 |
| 47 | - | . 9854 | - | . 9710 | $\cdot 000170$ | $-3.3353$ | 179.2792 |
| 48 | - | . 9853 | - | . 9708 | $\cdot 000179$ | -3.2972 | $173 \cdot 6601$ |
| 49 | - | . 9855 | - | . 9712 | $\cdot 000165$ | -3.2810 | 183.9433 |
| 50 | - | . 9855 | - | . 9714 | $\cdot 000154$ | -3.3240 | 212-4279 |

### 2.5. Approximation to the distribution of $W$

The complexity in the domain of the joint distribution of $W$ and the angles $\left\{\theta_{i}\right\}$ in Lemma 5 necessitates consideration of an approximation to the null distribution of $W$. Since only the first and second moments of normal order statistics are, practically, available, it follows that only the one-half and first moments of $W$ are known. Hence a technique such as the Cornish-Fisher expansion cannot be used.

In the circumstance it seemed both appropriate and efficient to employ empirical sampling to obtain an approximation for the null distribution.

Accordingly, normal random samples were obtained from the Rand Tables (Rand Corp. (1955)). Repeated values of $W$ were computed for $n=3(1) 50$ and the empirical percentage points determined for each value of $n$. The number of samples, $m$, employed was as follows:

$$
\text { for } \begin{aligned}
n & =3(1) 20, \quad m=5000, \\
n & =21(1) 50,
\end{aligned} \quad m=\left[\frac{100,000}{n}\right] .
$$

Fig. 4 gives the empirical c.d.f.'s for values of $n=5,10,15,20,35,50$. Fig. 5 gives a plot of the $1,5,10,50,90,95$, and 99 empirical percentage points of $W$ for $n=3(1) 50$.

A check on the adequacy of the sampling study is given by comparing the empirical one-half and the first moments of the sample with the corresponding theoretical moments of $W$ for $n=3(1) 20$. This comparison is given in Table 4, which provides additional assurance of the adequacy of the sampling study. Also in Table 4 are given the sample variance and the standardized third and fourth moments for $n=3(1) 50$.

After some preliminary investigation, the $S_{B}$ system of curves suggested by Johnson (1949) was selected as a basis for smoothing the empirical null $W$ distribution. Details of this procedure and its results are given in Shapiro \& Wilk (1965a). The tables of percentage points of $W$ given in §3 are based on these smoothed sampling results.

## 3. Summary of operational information

The objective of this section is to bring together all the tables and descriptions needed to execute the $W$ test for normality. This section may be employed independently of notational or other information from other sections.

The object of the $W$ test is to provide an index or test statistic to evaluate the supposed normality of a complete sample. The statistic has been shown to be an effective measure of normality even for small samples $(n<20)$ against a wide spectrum of non-normal alternatives (see §5 below and Shapiro \& Wilk (1964a)).

The $W$ statistic is scale and origin invariant and hence supplies a test of the composite null hypothesis of normality.

To compute the value of $W$, given a complete random sample of size $n, x_{1}, x_{2}, \ldots, x_{n}$, one proceeds as follows:
(i) Order the observations to obtain an ordered sample $y_{1} \leqslant y_{2} \leqslant \ldots \leqslant y_{n}$.
(ii) Compute

$$
S^{2}=\sum_{1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

(iii) (a) If $n$ is even, $n=2 k$, compute

$$
b=\sum_{i=1}^{k} a_{n-i+1}\left(y_{n-\imath+1}-y_{i}\right),
$$

where the values of $a_{n-i+1}$ are given in Table 5.
(b) If $n$ is odd, $n=2 k+1$, the computation is just as in (iii) (a), since $a_{k+1}=0$ when $n=2 k+1$. Thus one finds

$$
b=a_{n}\left(y_{n}-y_{1}\right)+\ldots+a_{k+2}\left(y_{k+2}-y_{k}\right),
$$

where the value of $y_{k+1}$, the sample median, does not enter the computation of $b$.
(iv) Compute $W=b^{2} / S^{2}$.
(v) $1,2,5,10,50,90,95,98$ and $99 \%$ points of the distribution of $W$ are given in Table 6. Small values of $W$ are significant, i.e. indicate non-normality.
(vi) A more precise significance level may be associated with an observed $W$ value by using the approximation detailed in Shapiro \& Wilk (1965a).

Table 5. Coefficients $\left\{a_{n-i+1}\right\}$ for the $W$ test for normality, for $n=2(1) 50$.

| $i$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.7071 | 0.7071 | $0 \cdot 6872$ | $0 \cdot 6646$ | $0 \cdot 6431$ | $0 \cdot 6233$ | $0 \cdot 6052$ | $0 \cdot 5888$ | 0.5739 |  |
| 2 | - | $\cdot 0000$ | $\cdot 1677$ | $\cdot 2413$ | -2806 | -3031 | $\cdot 3164$ | -3244 | -3291 |  |
| 3 | - | - | - | $\cdot 0000$ | -0875 | -1401 | $\cdot 1743$ | -1976 | -2141 |  |
| 4 | - | - | - | - | - | . 0000 | . 0561 | .0947 | - 1224 |  |
| 5 | - | - | - | - | - | - | - | .0000 | .0399 |  |
| $\lambda_{n}$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 1 | $0 \cdot 5601$ | 0.5475 | 0.5359 | 0.5251 | 0.5150 | 0.5056 | $0 \cdot 4968$ | $0 \cdot 4886$ | $0 \cdot 4808$ | $0 \cdot 4734$ |
| 2 | $\cdot 3315$ | $\cdot 3325$ | -3325 | -3318 | -3306 | - 3290 | $\cdot 3273$ | $\cdot 3253$ | -3232 | -3211 |
| 3 | -2260 | $\cdot 2347$ | -2412 | -2460 | -2495 | -2521 | -2540 | $\cdot 2553$ | -2561 | . 2565 |
| 4 | -1429 | $\cdot 1586$ | -1707 | -1802 | -1878 | -1939 | -1988 | -2027 | -2059 | -2085 |
| 5 | .0695 | -0922 | -1099 | $\cdot 1240$ | $\cdot 1353$ | -1447 | $\cdot 1524$ | $\cdot 1587$ | $\cdot 1641$ | $\cdot 1686$ |
| 6 | $0 \cdot 0000$ | $0 \cdot 0303$ | 0.0539 | 0.0727 | $0 \cdot 0880$ | $0 \cdot 1005$ | $0 \cdot 1109$ | $0 \cdot 1197$ | $0 \cdot 1271$ | $0 \cdot 1334$ |
| 7 | - | - | .0000 | -0240 | -0433 | -0593 | .0725 | -0837 | -0932 | $\cdot 1013$ |
| 8 | - | - | - | - | -0000 | -0196 | -0359 | -0496 | -0612 | $\cdot 0711$ |
| 9 | - | - |  | - | - | - | -0000 | $\cdot 0163$ | -0303 | -0422 |
| 10 | - | - | - | - | - | - | - | - | .0000 | .0140 |
| $i{ }^{n}$ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 1 | $0 \cdot 4643$ | $0 \cdot 4590$ | 0.4542 | $0 \cdot 4493$ | $0 \cdot 4450$ | $0 \cdot 4407$ | $0 \cdot 4366$ | $0 \cdot 4328$ | $0 \cdot 4291$ | 0.4254 |
| 2 | $\cdot 3185$ | $\cdot 3156$ | -3126 | -3098 | -3069 | $\cdot 3043$ | -3018 | -2992 | -2968 | -2944 |
| 3 | -2578 | -2571 | $\cdot 2563$ | $\cdot 2554$ | -2543 | -2533 | -2522 | -2510 | -2499 | -2487 |
| 4 | -2119 | $\cdot 2131$ | -2139 | -2145 | -2148 | - 2151 | -2152 | -2151 | -2150 | -2148 |
| 5 | -1736 | $\cdot 1764$ | $\cdot 1787$ | -1807 | -1822 | -1836 | -1848 | -1857 | -1864 | -1870 |
| 6 | $0 \cdot 1399$ | $0 \cdot 1443$ | $0 \cdot 1480$ | $0 \cdot 1512$ | $0 \cdot 1539$ | $0 \cdot 1563$ | $0 \cdot 1584$ | $0 \cdot 1601$ | $0 \cdot 1616$ | $0 \cdot 1630$ |
| 7 | -1092 | -1150 | -1201 | -1245 | -1283 | -1316 | -1346 | $\cdot 1372$ | $\cdot 1395$ | -1415 |
| 8 | -0804 | -0878 | -0941 | -0997 | -1046 | -1089 | -1128 | -1162 | -1192 | -1219 |
| 9 | .0530 | -0618 | . 0696 | -0764 | . 0823 | -0876 | -0923 | .0965 | -1002 | -1036 |
| 10 | . 0263 | -0368 | . 0459 | .0539 | -0610 | . 0672 | . 0728 | .0778 | . 0822 | -0862 |
| 11 | $0 \cdot 0000$ | $0 \cdot 0122$ | 0.0228 | 0.0321 | $0 \cdot 0403$ | $0 \cdot 0476$ | $0 \cdot 0540$ | $0 \cdot 0598$ | $0 \cdot 0650$ | 0.0697 |
| 12 | - | - | $\cdot 0000$ | .0107 | . 0200 | . 0284 | .0358 | .0424 | -0483 | -0537 |
| 13 | - | - | - | - | .0000 | -0094 | . 0178 | .0253 | .0320 | -0381 |
| 14 | - | - | - | - | - | - | .0000 | .0084 | -0159 | -0227 |
| 15 | - | - | - | - | - | - | - | - | $\cdot 0000$ | $\cdot 0076$ |

Table 5. Coefficients $\left\{a_{n-i+1}\right\}$ for the $W$ test for normality, for $n=2(1) 50$ (cont.)

|  | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $0 \cdot 4220$ | $0 \cdot 4188$ | $0 \cdot 4156$ | $0 \cdot 4127$ | $0 \cdot 4096$ | $0 \cdot 4068$ | $0 \cdot 4040$ | $0 \cdot 4015$ | $0 \cdot 3989$ | $0 \cdot 3964$ |
| 2 | $\cdot 2921$ | $\cdot 2898$ | $\cdot 2876$ | $\cdot 2854$ | $\cdot 2834$ | $\cdot 2813$ | -2794 | $\cdot 2774$ | -2755 | $\cdot 2737$ |
| 3 | $\cdot 2475$ | -2463 | $\cdot 2451$ | -2439 | -2427 | -2415 | $\cdot 2403$ | -2391 | -2380 | -2368 |
| 4 | - 2145 | -2141 | . 2137 | - 2132 | - 2127 | -2121 | . 2116 | -2110 | -2104 | -2098 |
| 5 | -1874 | -1878 | -1880 | -1882 | -1883 | $\cdot 1883$ | $\cdot 1883$ | $\cdot 1881$ | -1880 | -1878 |
| 6 | $0 \cdot 1641$ | $0 \cdot 1651$ | $0 \cdot 1660$ | $0 \cdot 1667$ | $0 \cdot 1673$ | $0 \cdot 1678$ | $0 \cdot 1683$ | $0 \cdot 1686$ | $0 \cdot 1689$ | $0 \cdot 1691$ |
| 7 | - 1433 | -1449 | $\cdot 1463$ | -1475 | -1487 | $\cdot 1496$ | $\cdot 1505$ | $\cdot 1513$ | $\cdot 1520$ | -1526 |
| 8 | -1243 | -1265 | -1284 | $\cdot 1301$ | $\cdot 1317$ | $\cdot 1331$ | $\cdot 1344$ | -1356 | -1366 | -1376 |
| 9 | -1066 | $\cdot 1093$ | -1118 | -1140 | $\cdot 1160$ | $\cdot 1179$ | -1196 | $\cdot 1211$ | -1225 | -1237 |
| 10 | - 0899 | . 0931 | $\cdot 0961$ | . 0988 | $\cdot 1013$ | $\cdot 1036$ | $\cdot 1056$ | $\cdot 1075$ | $\cdot 1092$ | $\cdot 1108$ |
| 11 | 0.0739 | 0.0777 | 0.0812 | 0.0844 | 0.0873 | 0.0900 | $0 \cdot 0924$ | 0.0947 | 0.0967 | $0 \cdot 0986$ |
| 12 | . 0585 | -0629 | .0669 | . 0706 | -0739 | -0770 | -0798 | -0824 | -0848 | .0870 |
| 13 | - 0435 | . 0485 | . 0530 | . 0572 | -0610 | -0645 | -0677 | - 0706 | -0733 | .0759 |
| 14 | -0289 | -0344 | . 0395 | -0441 | -0484 | -0523 | -0559 | -0592 | -0622 | . 0651 |
| 15 | - 0144 | .0206 | . 0262 | .0314 | . 0361 | . 0404 | -0444 | . 0481 | .0515 | . 0546 |
| 16 | 0.0000 | 0.0068 | 0.0131 | 0.0187 | 0.0239 | 0.0287 | 0.0331 | 0.0372 | 0.0409 | $0 \cdot 0444$ |
| 17 | - | - | . 0000 | -0062 | - 0119 | - 0172 | -0220 | -0264 | -0305 | . 0343 |
| 18 | - | - | - | - | $\cdot 0000$ | . 0057 | . 0110 | -0158 | -0203 | .0244 |
| 19 | - | - | - | - | - | - | -0000 | . 0053 | . 0101 | . 0146 |
| 20 | - | - | - | - | - | - | - | - | . 0000 | .0049 |
| $i{ }^{n}$ | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 1 | 0.3940 | 0.3917 | 0.3894 | 0.3872 | $0 \cdot 3850$ | 0.3830 | 0.3808 | $0 \cdot 3789$ | $0 \cdot 3770$ | 0.3751 |
| 2 | -2719 | $\cdot 2701$ | $\cdot 2684$ | $\cdot 2667$ | $\cdot 2651$ | $\cdot 2635$ | $\cdot 2620$ | $\cdot 2604$ | - 2589 | $\cdot 2574$ |
| 3 | -2357 | - 2345 | - 2334 | -2323 | $\cdot 2313$ | - 2302 | - 2291 | -2281 | - 2271 | -2260 |
| 4 | -2091 | - 2085 | -2078 | $\cdot 2072$ | -2065 | - 2058 | - 2052 | - 2045 | - 2038 | -2032 |
| 5 | -1876 | -1874 | -1871 | $\cdot 1868$ | $\cdot 1865$ | -1862 | $\cdot 1859$ | -1855 | -1851 | -1847 |
| 6 | $0 \cdot 1693$ | $0 \cdot 1694$ | $0 \cdot 1695$ | $0 \cdot 1693$ | $0 \cdot 1692$ | $0 \cdot 1691$ |
| 7 | $\cdot 1531$ | $\cdot 1535$ | $\cdot 1539$ | $\cdot 1542$ | $\cdot 1545$ | -1548 | -1550 | -1551 | $\cdot 1553$ | $\cdot 1554$ |
| 8 | -1384 | -1392 | -1398 | -1405 | -1410 | -1415 | - 1420 | $\cdot 1423$ | -1427 | -1430 |
| 9 | -1249 | -1259 | -1269 | -1278 | -1286 | -1293 | -1300 | -1306 | $\cdot 1312$ | $\cdot 1317$ |
| 10 | -1123 | $\cdot 1136$ | $\cdot 1149$ | -1160 | -1170 | $\cdot 1180$ | $\cdot 1189$ | -1197 | $\cdot 1205$ | -1212 |
| 11 | $0 \cdot 1004$ | $0 \cdot 1020$ | $0 \cdot 1035$ | $0 \cdot 1049$ | $0 \cdot 1062$ | $0 \cdot 1073$ | $0 \cdot 1085$ | $0 \cdot 1095$ | $0 \cdot 1105$ | $0 \cdot 1113$ |
| 12 | -0891 | $\cdot 0909$ | -0927 | -0943 | .0959 | - 0972 | $\cdot 0986$ | .0998 | $\cdot 1010$ | -1020 |
| 13 | .0782 | -0804 | -0824 | .0842 | .0860 | -0876 | -0892 | -0906 | -0919 | -0932 |
| 14 | .0677 | . 0701 | -0724 | . 0745 | .0765 | $\cdot 0783$ | .0801 | .0817 | .0832 | -0846 |
| 15 | . 0575 | . 0602 | . 0628 | . 0651 | . 0673 | -0694 | . 0713 | .0731 | .0748 | . 0764 |
| 16 | $0 \cdot 0476$ | 0.0506 | 0.0534 | 0.0560 | 0.0584 | $0 \cdot 0607$ | 0.0628 | 0.0648 | $0 \cdot 0667$ | $0 \cdot 0685$ |
| 17 | .0379 | . 0411 | - 0442 | . 0471 | . 0497 | . 0522 | .0546 | . 0568 | . 0588 | -0608 |
| 18 | .0283 | $\cdot 0318$ | -0352 | .0383 | .0412 | -0439 | $\cdot 0465$ | .0489 | .0511 | -0532 |
| 19 | . 0188 | .0227 | . 0263 | . 0296 | . 0328 | .0357 | . 0385 | .0411 | .0436 | -0459 |
| 20 | .0094 | .0136 | .0175 | . 0211 | . 0245 | .0277 | .0307 | . 0335 | .0361 | . 0386 |
| 21 | $0 \cdot 0000$ | 0.0045 | 0.0087 | $0 \cdot 0126$ | 0.0163 | 0.0197 | 0.0229 | 0.0259 | $0 \cdot 0288$ | $0 \cdot 0314$ |
| 22 |  | - | .0000 | .0042 | .0081 | .0118 | .0153 | . 0185 | . 0215 | - 0244 |
| 23 | - | - | - | - | . 0000 | .0039 | . 0076 | .0111 | . 0143 | -0174 |
| 24 | - | - | - | - | - | - | . 0000 | .0037 | .0071 | -0104 |
| 25 | - | -- | - | - | - | - | - | - | .0000 | . 0035 |

Table 6. Percentage points of the $W$ test $*$ for $n=3(1) 50$
Level

| $n$ | $\overparen{0.01}$ | 0.02 | 0.05 | 0-10 | 0.50 | 0.90 | 0.95 | 0.98 | 0.99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.753 | 0.756 | $0 \cdot 767$ | $0 \cdot 789$ | 0.959 | 0.998 | 0.999 | 1.000 | 1.000 |
| 4 | -687 | -707 | $\cdot 748$ | -792 | . 935 | . 987 | . 992 | . 996 | -997 |
| 5 | .686 | .715 | $\cdot 762$ | -806 | . 927 | . 979 | . 986 | . 991 | -993 |
| 6 | 0.713 | 0.743 | $0 \cdot 788$ | $0 \cdot 826$ | 0.927 | 0.974 | 0.981 | 0.986 | 0.989 |
| 7 | $\cdot 730$ | . 760 | .803 | . 838 | -928 | . 972 | . 979 | . 985 | $\cdot 988$ |
| 8 | -749 | -778 | -818 | -851 | $\cdot 932$ | . 972 | . 978 | . 984 | . 987 |
| 9 | $\cdot 764$ | . 791 | .829 | -859 | . 935 | $\cdot 972$ | . 978 | . 984 | -986 |
| 10 | $\cdot 781$ | $\cdot 806$ | .842 | . 869 | . 938 | . 972 | . 978 | . 983 | . 986 |
| 11 | $0 \cdot 792$ | $0 \cdot 817$ | $0 \cdot 850$ | 0.876 | 0.940 | 0.973 | 0.979 | 0.984 | $0 \cdot 986$ |
| 12 | -805 | . 828 | . 859 | . 883 | . 943 | . 973 | . 979 | . 984 | $\cdot 986$ |
| 13 | . 814 | . 837 | -866 | . 889 | . 945 | . 974 | . 979 | . 984 | . 986 |
| 14 | $\cdot 825$ | $\cdot 846$ | $\cdot 874$ | . 895 | . 947 | . 975 | .980 | . 984 | .986 |
| 15 | -835 | . 855 | -881 | . 901 | . 950 | . 975 | . 980 | . 984 | . 987 |
| 16 | $0 \cdot 844$ | $0 \cdot 863$ | $0 \cdot 887$ | 0.906 | 0.952 | 0.976 | 0.981 | 0.985 | 0.987 |
| 17 | . 851 | . 869 | . 892 | . 910 | . 954 | . 977 | . 981 | . 985 | . 987 |
| 18 | -858 | . 874 | $\cdot 897$ | . 914 | . 956 | -978 | . 982 | . 986 | $\cdot 988$ |
| 19 | -863 | . 879 | . 901 | . 917 | . 957 | . 978 | . 982 | . 986 | . 988 |
| 20 | . 868 | . 884 | . 905 | . 920 | . 959 | . 979 | . 983 | .986 | . 988 |
| 21 | $0 \cdot 873$ | $0 \cdot 888$ | 0.908 | 0.923 | $0 \cdot 960$ | 0.980 | 0.983 | 0.987 | 0.989 |
| 22 | . 878 | -892 | . 911 | .926 | .961 | . 980 | . 984 | . 987 | $\cdot 989$ |
| 23 | -881 | -895 | . 914 | . 928 | . 962 | . 981 | . 984 | . 987 | . 989 |
| 24 | -884 | -898 | . 916 | . 930 | . 963 | . 981 | . 984 | . 987 | . 989 |
| 25 | $\cdot 888$ | . 901 | . 918 | . 931 | . 964 | . 981 | . 985 | . 988 | . 989 |
| 26 | 0.891 | $0 \cdot 904$ | 0.920 | 0.933 | 0.965 | 0.982 | 0.985 | 0.988 | 0.989 |
| 27 | . 894 | -906 | . 923 | $\cdot 935$ | . 965 | . 982 | . 985 | . 988 | . 990 |
| 28 | -896 | . 908 | . 924 | $\cdot 936$ | . 966 | . 982 | . 985 | . 988 | . 990 |
| 29 | -898 | . 910 | . 926 | -937 | . 966 | . 982 | $\cdot 985$ | . 988 | . 990 |
| 30 | . 900 | . 912 | . 927 | . 939 | . 967 | . 983 | . 985 | . 988 | . 900 |
| 31 | 0.902 | 0.914 | 0.929 | 0.940 | 0.967 | 0.983 | 0.986 | 0.988 | 0.990 |
| 32 | . 904 | .915 | $\cdot 930$ | . 941 | . 968 | . 983 | $\cdot 986$ | . 988 | . 990 |
| 33 | . 906 | .917 | . 931 | . 942 | . 968 | . 983 | . 986 | . 989 | . 990 |
| 34 | . 908 | . 919 | . 933 | . 943 | . 969 | . 983 | . 986 | . 989 | . 990 |
| 35 | -910 | . 920 | . 934 | . 944 | . 969 | . 984 | . 986 | -989 | . 990 |
| 36 | 0.912 | 0.922 | 0.935 | 0.945 | 0.970 | 0.984 | 0.986 | 0.989 | 0.990 |
| 37 | .914 | . 924 | -936 | . 946 | -970 | . 984 | -987 | -989 | . 990 |
| 38 | . 916 | . 925 | . 938 | . 947 | . 971 | . 984 | . 987 | . 989 | . 990 |
| 39 | .917 | . 927 | . 939 | . 948 | . 971 | . 984 | . 987 | . 989 | . 991 |
| 40 | . 919 | . 928 | -940 | . 949 | -972 | . 985 | . 987 | . 989 | . 991 |
| 41 | 0.920 | 0.929 | 0.941 | 0.950 | 0.972 | 0.985 | 0.987 | 0.989 | 0.991 |
| 42 | . 922 | . 930 | . 942 | $\cdot 951$ | $\cdot 972$ | $\cdot 985$ | . 987 | -989 | . 991 |
| 43 | . 923 | . 932 | . 943 | -951 | . 973 | . 985 | . 987 | -990 | . 991 |
| 44 | . 924 | . 933 | -944 | . 952 | $\cdot 973$ | . 985 | . 987 | -990 | .991 |
| 45 | . 926 | . 934 | $\cdot 945$ | -953 | . 973 | . 985 | -988 | -990 | .991 |
| 46 | 0.927 | 0.935 | 0.945 | 0.953 | 0.974 | 0.985 | 0.988 | 0.990 | 0.991 |
| 47 | . 928 | . 936 | . 946 | . 954 | . 974 | . 985 | . 988 | . 990 | . 991 |
| 48 | . 929 | . 937 | -947 | . 954 | . 974 | . 985 | . 988 | -990 | -991 |
| 49 | . 929 | -937 | . 947 | $\cdot 955$ | . 974 | . 985 | . 988 | -990 | -991 |
| 50 | . 930 | . 938 | . 947 | . 955 | . 974 | . 985 | . 988 | -990 | -991 |

[^1]To illustrate the process, suppose a sample of 7 observations were obtained, namely $x_{1}=6, x_{2}=1, x_{3}=-4, x_{4}=8, x_{5}=-2, x_{6}=5, x_{7}=0$.
(i) Ordering, one obtains

$$
y_{1}=-4, \quad y_{2}=-2, \quad y_{3}=0, \quad y_{4}=1, \quad y_{5}=5, \quad y_{6}=6, \quad y_{7}=8
$$

(ii) $S^{2}=\Sigma y_{i}^{2}-\frac{1}{7}\left(\Sigma y_{i}\right)^{2}=146-28=118$.
(iii) From Table 5, under $n=7$, one obtains

$$
a_{7}=0.6233, \quad a_{6}=0.3031, \quad a_{5}=0.1401, \quad a_{4}=0.0000
$$

Thus

$$
b=0.6233(8+4)+0.3031(6+2)+0 \cdot 1401(5-0)=10.6049
$$

(iv) $W=(10.6049)^{2} / 118=0.9530$.
(v) Referring to Table 6, one finds the value of $W$ to be substantially larger than the tabulated $50 \%$ point, which is 0.928 . Thus there is no evidence, from the $W$ test, of nonnormality of this sample.

## 4. Examples

Example 1. Snedecor (1946, p. 175), makes a test of normality for the following sample of weights in pounds of $11 \mathrm{men}: 148,154,158,160,161,162,166,170,182,195,236$.

The $W$ statistic is found to be 0.79 which is just below the $1 \%$ point of the null distribution. This agrees with Snedecor's approximate application of the $\sqrt{ } b_{1}$ statistic test.

Example 2. Kendall (1948, p. 194) gives an extract of 200 'random sampling numbers' from the Kendall-Babington Smith, Tracts for Computers No. 24. These were totalled, as number pairs, in groups of 10 to give the following sample of size 10: 303, 338, 406, 457, 461, 469, 474, 489, 515, 583.

The $W$ statistic in this case has the value 0.9430 , which is just above the $50 \%$ point of the null distribution.

Example 3. Davies et al. (1956) give an example of a $2^{5}$ experiment on effects of five factors on yields of penicillin. The 5 -factor interaction is confounded between 2 blocks. Omitting the confounded effect the ordered effects are:

| C | 0.0958 | ABC | 0.0002 |
| :--- | ---: | :--- | ---: |
| BC | .0333 | CD | -0.0026 |
| ACDE | .0293 | B | -0.0036 |
| BCE | .0246 | BD | -0.0042 |
| ACD | .0206 | BCD | -0.0113 |
| ABCE | .0194 | ABE | -0.0139 |
| DE | .0191 | ABD | -0.0211 |
| BE | .0182 | AC | -0.0333 |
| BDE | .0173 | AD | -0.0341 |
| ADE | .0032 | ACE | -0.0363 |
| BCDE | .0102 | ABCD | -0.0363 |
| ABDE | .0084 | AB | -0.0402 |
| CDE | .0077 | CE | -0.0582 |
| D | .0058 | A | -0.1184 |
| AE | .0016 | E | -0.1398 |

In their analysis of variance, Davies et al. pool the 3-and 4-factor interactions for an error term. They do not find the pooled 2 -factor interaction mean square to be significant but note that CE is significant at the $5 \%$ point on a standard $F$-test. However, on the basis of a Bartlett test, they find that the significance of CE does not reach the $5 \%$ level.

The overall statistical configuration of the 30 unconfounded effects may be evaluated against a background of a null hypothesis that these are a sample of size 30 from a normal population. Computing the $W$ statistic for this hypothesis one finds a value of 0.8812 , which is substantially below the tabulated $1 \%$ point for the null distribution.

One may now ask whether the sample of size 25 remaining after removal of the 5 main effects terms has a normal configuration. The corresponding value of $W$ is 0.9326 , which is above the $10 \%$ point of the null distribution.

To investigate further whether the 2 -factor interactions taken alone may have a nonnormal configuration due to one or more 2 -factor interactions which are statistically 'too large', the $W$ statistic may be computed for the ten 2 -factor effects. This gives

$$
W=0.9465
$$

which is well above the $50 \%$ point, for $n=10$.
Similarly, the 15 combined 3 and 4 -factor interactions may be examined from the same point of view. The $W$ value is 0.9088 , which is just above the $10 \%$ value of the null distribution.

Thus this analysis, combined with an inspection of the ordered contrasts, would suggest that the A, C and E main effects are real, while the remaining effects may be regarded as a random normal sample. This analysis does not indicate any reason to suspect a real CE effect based only on the statistical evidence.

The partitioning employed in this latter analysis is of course valid since the criteria employed are independent of the observations per se.

In the situation of this example, the sign of the contrasts is of course arbitrary and hence their distributional configuration should be evaluated on the basis of the absolute values, as in half-normal plotting (see Daniel, 1959). Thus, the above procedure had better be carried out using a half-normal version of the $W$ test if that were available.

## 5. Comparison with other tests for normality

To evaluate the $W$ procedure relative to other tests for normality an empirical sampling investigation of comparative properties was conducted, using a range of populations and sample sizes. The results of this study are given in Shapiro \& Wilk (1964a), only a brief extract is included in the present paper.
The null distribution used for the study of the $W$ test was determined as described above. For all other statistics, except the $\chi^{2}$ goodness of fit, the null distribution employed was determined empirically from 500 samples. For the $\chi^{2}$ test, standard $\chi^{2}$ table values were used. The power results for all procedures and alternate distributions were derived from 200 samples.

Empirical sampling results were used to define null distribution percentage points for a combination of convenience and extensiveness in the more exhaustive study of which the results quoted here are an extract. More exact values have been published by various authors for some of these null percentage points. Clearly one employing the KolmogorovSmirnov procedure, for example, as a statistical method would be well advised to employ the most accurate null distribution information available. However, the present power results are intended only for indicative interest rather than as a definitive description of a procedure, and uncertainties or errors of several percent do not materially influence the comparative assessment.

Table 7 gives results on the power of a $5 \%$ test for samples of size 20 for each of nine test procedures and for fifteen non-normal populations. The tests shown in Table 7 are: $W$; chi-squared goodness of fit ( $\chi^{2}$ ); standardized 3rd and 4th moments, $\sqrt{ } b_{1}$ and $b_{2} ;$ KolmogorovSmirnov (KS) (Kolmogorov, 1933); Cramér-Von Mises (CVM) (Cramér, 1928); a weighted, by $F /(1-F)$, Cramér-Von Mises (WCVM), where $F$ is the cumulative distribution function (Anderson \& Darling, 1954); Durbin's version of the Kolmogorov-Smirnov procedure (D) (Durbin, 1961); range/standard deviation (u) (David et al. 1954).

Table 7. Empirical power for $5 \%$ tests for selected alternative distributions; samples all of size 20

| Population title | $\sqrt{ } \beta_{1}$ | $\beta_{2}$ | W | $\chi^{2}$ | $\sqrt{ }{ }_{1}$ | $b_{2}$ | KS | CVM | WCVM | D | $u$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\chi^{2}(1)$ | $2 \cdot 83$ | $15 \cdot 0$ | 0.98 | 0.94 | $0 \cdot 89$ | 0.53 | $0 \cdot 44$ | 0.44 | 0.54 | $0 \cdot 87$ | $0 \cdot 10$ |
| $\chi^{2}$ (2) | $2 \cdot 00$ | $9 \cdot 0$ | -84 | $\cdot 33$ | $\cdot 74$ | $\cdot 34$ | $\cdot 27$ | -23 | -27 | $\cdot 42$ | .08 |
| $\chi^{2}$ (4) | $1 \cdot 41$ | $6 \cdot 0$ | $\cdot 50$ | -13 | -49 | -27 | $\cdot 18$ | -13 | -16 | $\cdot 15$ | -06 |
| $\chi^{2}$ (10) | $0 \cdot 89$ | $4 \cdot 2$ | -29 | .07 | -29 | -19 | $\cdot 11$ | -10 | -11 | $\cdot 07$ | .06 |
| Non-cent. $\chi^{2}$ | 2.73 | $3 \cdot 7$ | -59 | -10 | $\cdot 50$ | . 20 | -19 | $\cdot 16$ | -18 | $\cdot 20$ | -10 |
| Log normal | $6 \cdot 19$ | $113 \cdot 9$ | .93 | $\cdot 95$ | -89 | . 58 | -44 | -48 | -62 | - 82 | -06 |
| Cauchy | - | - | -88 | $\cdot 41$ | $\cdot 77$ | -81 | -45 | -55 | . 98 | . 85 | . 56 |
| Uniform | 0 | $1 \cdot 8$ | -23 | $\cdot 11$ | $\cdot 00$ | -29 | $\cdot 13$ | -09 | $\cdot 10$ | . 08 | . 38 |
| Logistic | 0 | $4 \cdot 2$ | -08 | -06 | $\cdot 12$ | -06 | - 06 | .03 | . 05 | . 05 | -07 |
| Beta (2, 1) | $-0.57$ | $2 \cdot 4$ | $\cdot 35$ | .08 | $\cdot 08$ | $\cdot 13$ | -08 | $\cdot 10$ | $\cdot 12$ | -12 | $\cdot 23$ |
| La Place | 0 | $6 \cdot 0$ | $\cdot 25$ | $\cdot 17$ | $\cdot 25$ | $\cdot 27$ | $\cdot 07$ | $\cdot 07$ | -29 | $\cdot 16$ | -19 |
| Poisson (1) | 1.00 | $4 \cdot 0$ | . 99 | $1 \cdot 00$ | $\cdot 26$ | $\cdot 11$ | $\cdot 55$ | -22 | -31 | $1 \cdot 00$ | $\cdot 35$ |
| Binomial, $(4,0 \cdot 5)$ | 0 | $2 \cdot 5$ | $\cdot 71$ | $1 \cdot 00$ | . 02 | . 03 | $\cdot 38$ | $\cdot 15$ | $\cdot 17$ | $1 \cdot 00$ | $\cdot 20$ |
| *T(5, 2.4) | $0 \cdot 79$ | $2 \cdot 2$ | $\cdot 55$ | $\cdot 14$ | $\cdot 24$ | -20 | $\cdot 23$ | -20 | $\cdot 22$ | - | - |
| * $T(10,3 \cdot 1)$ | 0.97 | $2 \cdot 8$ | $\cdot 89$ | -32 | $\cdot 51$ | -24 | $\cdot 32$ | -30 | $\cdot 30$ | - | - |

* Variates from this distribution $T(a, \lambda)$ are defined by $y=a R^{\lambda}-(1-R)^{\lambda}$, where $R$ is uniform $(0,1)$ (Hastings, Mosteller, Tukey \& Winsor, 1947). Also note that ( $a$ ) the non-central $\chi^{2}$ distribution has degrees of freedom 16, non-centrality parameter 1; (b) the beta distribution has $p=2, q=1$ in standard notation; (c) the Poisson distribution has expectation 1.

In using the non-scale and non-origin invariant tests the mean and variance of the hypothesized normal was taken to agree with the known mean and variance of the alternative distribution. For the Cauchy the mode and intrinsic accuracy were used.

The results of Table 7 indicate that the $W$ test is comparatively quite sensitive to a wide range of non-normality, even with samples as small as $n=20$. It seems to be especially sensitive to asymmetry, long-tailedness and to some degree to short-tailedness.

The $\chi^{2}$ procedure shows good power against the highly skewed distributions and reasonable sensitivity to very long-tailedness.

The $\sqrt{ } b_{1}$ test is quite sensitive to most forms of skewness. The $b_{2}$ statistic can usefully augment $\sqrt{ } b_{1}$ in certain circumstances. The high power of $\sqrt{ } b_{1}$ for the Cauchy alternative is probably due to the fact that, though the Cauchy is symmetric, small samples from it will often be asymmetric because of the very long-tailedness of the distribution.

The KS test has similar properties to that of the CVM procedure, with a few exceptions. In general the WCVM test has higher power than KS or CVM, especially in the case of longtailed alternatives, such as the Cauchy, for which WCVM had the highest power of all the statistics examined.

The use of Durbin's procedure improves the KS sensitivity only in the case of highly
skewed and discrete alternatives. Against the Cauchy, the D test responds, like $\sqrt{ } b_{1}$, to the asymmetry of small samples.

The $u$ test gives good results against the uniform alternative and this is representative of its properties for short-tailed symmetric alternatives.

The $\chi^{2}$ test has the disadvantages that the number and character of class intervals used is arbitrary, that all information concerning sign and trend of discrepancies is ignored and that, for small samples, the number of cells must be very small. These factors might explain some of the lapses of power for $\chi^{2}$ indicated in Table 7. Note that for almost all cases the power of $W$ is higher than that of $\chi^{2}$.

As expected, the $\sqrt{ } b_{1}$ test is in general insensitive in the case of symmetric alternatives as illustrated by the uniform distribution. Note that for all cases, except the logistic, $\sqrt{ } b_{1}$ power is dominated by that of the $W$ test.

Table 8. The effect of mis-specification of parameters

$$
(n=20,5 \% \text { test, assumed parameters are } \mu=0, \sigma=1)
$$

| Actual parameters |  |  | $\begin{gathered} \text { Sample } \\ \text { size } \end{gathered}$ | Tests |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ | $\sigma$ | $\mu / \sigma$ |  | KS | CM | WCVM | D | $\chi^{2}$ |
| $0 \cdot 00$ | $1 \cdot 2$ | $0 \cdot 00$ | 20 | $0 \cdot 06$ | $0 \cdot 08$ | $0 \cdot 18$ | $0 \cdot 09$ | 0.07 |
| $\cdot 00$ | $1 \cdot 3$ | -00 | 20 | -12 | $\cdot 12$ | $\cdot 29$ | -10 | . 09 |
| $\cdot 15$ | 1.0 | -15 | 20 | -05 | -08 | -10 | -03 | .04 |
| -18 | $1 \cdot 2$ | $\cdot 15$ | 20 | -08 | $\cdot 16$ | $\cdot 24$ | $\cdot 11$ | -12 |
| -195 | $1 \cdot 3$ | -15 | 20 | $\cdot 07$ | $\cdot 12$ | $\cdot 31$ | -12 | -10 |
| -30 | $1 \cdot 0$ | $\cdot 30$ | 20 | $\cdot 14$ | -26 | $\cdot 31$ | $\cdot 07$ | -11 |
| $\cdot 36$ | $1 \cdot 2$ | $\cdot 30$ | 20 | $\cdot 21$ | $\cdot 34$ | -46 | $\cdot 16$ | . 21 |
| $\cdot 39$ | $1 \cdot 3$ | $\cdot 30$ | 20 | $\cdot 21$ | $\cdot 38$ | $\cdot 55$ | $\cdot 19$ | $\cdot 26$ |

The $b_{2}$ test is not sensitive to asymmetry. Its performance was inferior to that of $W$ except in the cases of the Cauchy, uniform, logistic and Laplace for which its performance was equivalent to that of $W$.

Both the KS and CVM tests have quite inferior power properties. With sporadic exception in the case of very long-tailedness this is true also of the WCVM procedure. The D procedure does improve on the KS test but still ends up with power properties which are not as good as other test statistics, with the exceptions of the discrete alternatives. (In addition, the D test is laborious for hand computation.)

The $u$ statistic shows very poor sensitivity against even highly skewed and very longtailed distributions. For example, in the case of the $\chi^{2}(1)$ alternative, the $u$ test has power of $10 \%$ while even the KS test has a power of $44 \%$ and that for $W$ is $98 \%$. While the $u$ test shows interesting sensitivity for uniform-like departures from normality, it would seem that the types of non-normality that it is usually important to identify are those of asymmetry and of long-tailedness and outliers.

The reader is referred to David et al. (1954, pp. 488-90) for a comparison of the power of the $b_{2}, u$ and Geary's (1935) ' $a$ ' (mean deviation/standard deviation) tests in detecting departure from normality in symmetrical populations. Using a Monte Carlo technique, they found that Geary's statistic (which was not considered here) was possibly more effective than either $b_{2}$ or $u$ in detecting long-tailedness.

The test statistics considered above can be put into two classes. Those which are valid
for composite hypotheses and those which are valid for simple hypotheses. For the simple hypotheses procedures, such as $\chi^{2}, \mathrm{KS}, \mathrm{CVM}$, WCVM and D, the parameters of the null distribution must be pre-specified. A study was made of the effect of small errors of specification on the test performance. Some of the results of this study are given in Table 8. The apparent power in the cases of mis-specification is comparable to that attained for these procedures against non-normal alternatives. For example, for $\mu / \sigma=0 \cdot 3$, WCVM has apparent power of between 0.31 and 0.55 while its power against $\chi^{2}(2)$ is only 0.27 .

## 6. Discussion and concluding remarks

## 6•1. Evaluation of test

As a test for the normality of complete samples, the $W$ statistic has several good featuresnamely, that it may be used as a test of the composite hypothesis, that is very simple to compute once the table of linear coefficients is available and that the test is quite sensitive against a wide range of alternatives even for small samples ( $n<20$ ). The statistic is responsive to the nature of the overall configuration of the sample as compared with the configuration of expected values of normal order statistics.

A drawback of the $W$ test is that for large sample sizes it may prove awkward to tabulate or approximate the necessary values of the multipliers in the numerator of the statistic. Also, it may be difficult for large sample sizes to determine percentage points of its distribution.

The $W$ test had its inception in the framework of probability plotting. The formal use of the (one-dimensional) test statistic as a methodological tool in evaluating the normality of a sample is visualized by the authors as a supplement to normal probability plotting and not as a substitute for it.

### 6.2. Extensions

It has been remarked earlier in the paper that a modification of the present $W$ statistic may be defined so as to be usable with incomplete samples. Work on this modified $W^{*}$ statistic will be reported elsewhere (Shapiro \& Wilk, 1965b).

The general viewpoint which underlies the construction of the $W$ and $W^{*}$ tests for normality can be applied to derive tests for other distributional assumptions, e.g. that a sample is uniform or exponential. Research on the construction of such statistics, including necessary tables of constants and percentage points of null distributions, and on their statistical value against various alternative distributions is in process (Shapiro \& Wilk, $1964 b$ ). These statistics may be constructed so as to be scale and origin invariant and thus can be used for tests of composite hypothesis.

It may be noted that many of the results of $\S 2 \cdot 3$ apply to any symmetric distribution.
The $W$ statistic for normality is sensitive to outliers, either one-sided or two-sided. Hence it may be employed as part of an inferential procedure in the analysis of experimental data as suggested in Example 3 of $\S 4$.

The authors are indebted to Mrs M. H. Becker and Mrs H. Chen for their assistance in various phases of the computational aspects of the paper. Thanks are due to the editor and referees for various editorial and other suggestions.

## References

Aitken, A. C. (1935). On least squares and linear combination of observations. Proc. Roy. Soc. Edin. 55, 42-8.
Anderson, T. W. \& Darling, D. A. (1954). A test for goodness of fit. J. Amer. Statist. Ass. 49, 765-9.
Cramér, H. (1928). On the composition of elementary errors. Skand. Aktuar. 11, 141-80.
Daniel, C. (1959). Use of half-normal plots in interpreting factorial two level experiments. Technometrics, 1, 311-42.
David, H. A., Hartley, H. O. \& Pearson, E. S. (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika, 41, 482-3.
Davies, O. L. (ed). (1956). Design and Analysis of Industrial Experiments. London: Oliver and Boyd.
Durbin, J. (1961). Some methods of constructing exact tests. Biometrika, 48, 41-55.
Geary, R. C. (1935). The ratio of the mean deviation to the standard deviation as a test of normality. Biometrika, 27, 310-32.
Harter, H. L. (1961). Expected values of normal order statistics. Biometrika, 48, 151-65.
Hastings, C., Mosteller, F., Tukey, J. \& Winsor, C. (1947). Low moments for small samples: a comparative study of order statistics. Ann. Math. Statist. 18, 413-26.
Hogg, R. V. \& Craig, A. J. (1956). Sufficient statistics in elementary distribution theory. Sankyā, 17, 209-16.
Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149-76.
Kendall, M. G. (1948). The Advanced Theory of Statistics, 1. London: C. Griffin and Co.
Kendall, M. G. \& Stuart, A. (1961). The Advanced Theory of Statistics, 2. London: C. Griffin and Co.
Kolmogorov, A. N. (1933). Sulla determinazione empirica di une legge di distribuzione. G. Ist. Att.uari, 83-91.
Lloyd, E. H. (1952). Least squares estimation of location and scale parameters using order statistics. Biometrika, 39, 88-95.
Pearson, E. S. \& Stephens, M. A. (1964). The ratio of range to standard deviation in the same normal sample. Biometrika, 51, 484-7.
Plackett, R. L. (1958). Linear estimation from censored data. Ann. Math. Statist. 29, 131-42.
Rand Corporation (1955). A Million Random Digits with 100,000 Normal Deviates.
Sarian, A. E. \& Greenberg, B. G. (1956). Estimation of location and scale parameters by order statistics from singly and double censored samples. Part I. Ann. Math. Statist. 27, 427-51.
Shapiro, S. S. (1964). An analysis of variance test for normality (complete samples). Unpublished Ph.D. Thesis, Rutgers-The State University.
Shapiro, S. S. \& Wilk, M. B. (1964a). A comparative study of various tests for normality. Unpublished manuscript. Invited paper, Amer. Stat. Assoc, Annual Meeting, Chicago, Illinois, December 1964.

Shapiro, S. S. \& Wilk, M. B. (1964b). Tests for the exponential and uniform distributions. (Unpublished manuscript.)
Shapiro, S. S. \& Wilk, M. B. (1965a). Testing the normality of several samples. (Unpublished manuscript).
Shapiro, S. S. \& Wilk, M. B. (1965b). An analysis of variance test for normality (incomplete samples). (Unpublished manuscript.)
Snedecor, G. W. (1946). Statistical Methods, 4th edition. Ames: Iowa State College Press.


[^0]:    $\dagger$ Part of this research was supported by the Office of Naval Research while both authors were at Rutgers University.

[^1]:    * Based on fitted Johnson (1949) $S_{B}$ approximation, see Shapiro \& Wilk (1965a) for details.

