

Biometrika Trust

An Analysis of Variance Test for Normality (Complete Samples) Author(s): S. S. Shapiro and M. B. Wilk Source: *Biometrika*, Vol. 52, No. 3/4 (Dec., 1965), pp. 591-611 Published by: Oxford University Press on behalf of Biometrika Trust Stable URL: https://www.jstor.org/stable/2333709 Accessed: 09-01-2019 21:21 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Biometrika Trust, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Biometrika

Biometrika (1965), **52**, 3 and 4, p. 591 With 5 text-figures Printed in Great Britain

An analysis of variance test for normality (complete samples)[†]

BY S. S. SHAPIRO AND M. B. WILK

General Electric Co. and Bell Telephone Laboratories, Inc.

1. INTRODUCTION

The main intent of this paper is to introduce a new statistical procedure for testing a complete sample for normality. The test statistic is obtained by dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric estimate of variance. This ratio is both scale and origin invariant and hence the statistic is appropriate for a test of the composite hypothesis of normality.

Testing for distributional assumptions in general and for normality in particular has been a major area of continuing statistical research—both theoretically and practically. A possible cause of such sustained interest is that many statistical procedures have been derived based on particular distributional assumptions—especially that of normality. Although in many cases the techniques are more robust than the assumptions underlying them, still a knowledge that the underlying assumption is incorrect may temper the use and application of the methods. Moreover, the study of a body of data with the stimulus of a distributional test may encourage consideration of, for example, normalizing transformations and the use of alternate methods such as distribution-free techniques, as well as detection of gross peculiarities such as outliers or errors.

The test procedure developed in this paper is defined and some of its analytical properties described in §2. Operational information and tables useful in employing the test are detailed in §3 (which may be read independently of the rest of the paper). Some examples are given in §4. Section 5 consists of an extract from an empirical sampling study of the comparison of the effectiveness of various alternative tests. Discussion and concluding remarks are given in §6.

2. The W test for normality (complete samples)

$2 \cdot 1$. Motivation and early work

This study was initiated, in part, in an attempt to summarize formally certain indications of probability plots. In particular, could one condense departures from statistical linearity of probability plots into one or a few 'degrees of freedom' in the manner of the application of analysis of variance in regression analysis?

In a probability plot, one can consider the regression of the ordered observations on the expected values of the order statistics from a standardized version of the hypothesized distribution—the plot tending to be linear if the hypothesis is true. Hence a possible method of testing the distributional assumption is by means of an analysis of variance type procedure. Using generalized least squares (the ordered variates are correlated) linear and higher-order models can be fitted and an F-type ratio used to evaluate the adequacy of the linear fit.

 \dagger Part of this research was supported by the Office of Naval Research while both authors were at Rutgers University.

This approach was investigated in preliminary work. While some promising results were obtained, the procedure is subject to the serious shortcoming that the selection of the higher-order model is, practically speaking, arbitrary. However, research is continuing along these lines.

Another analysis of variance viewpoint which has been investigated by the present authors is to compare the squared slope of the probability plot regression line, which under the normality hypothesis is an estimate of the population variance multiplied by a constant, with the residual mean square about the regression line, which is another estimate of the variance. This procedure can be used with incomplete samples and has been described elsewhere (Shapiro & Wilk, 1965b).

As an alternative to the above, for complete samples, the squared slope may be compared with the usual symmetric sample sum of squares about the mean which is independent of the ordering and easily computable. It is this last statistic that is discussed in the remainder of this paper.

$2 \cdot 2$. Derivation of the W statistic

Let $m' = (m_1, m_2, ..., m_n)$ denote the vector of expected values of standard normal order statistics, and let $V = (v_{ij})$ be the corresponding $n \times n$ covariance matrix. That is, if $x_1 \leq x_2 \leq ... x_n$ denotes an ordered random sample of size n from a normal distribution with mean 0 and variance 1, then

and

$$E(x)_i = m_i \quad (i = 1, 2, ..., n),$$

$$\cos(x_i, x_j) = v_{ij} \quad (i, j = 1, 2, ..., n).$$

Let $y' = (y_1, ..., y_n)$ denote a vector of ordered random observations. The objective is to derive a test for the hypothesis that this is a sample from a normal distribution with unknown mean μ and unknown variance σ^2 .

Clearly, if the $\{y_i\}$ are a normal sample then y_i may be expressed as

$$y_i = \mu + \sigma x_i \quad (i = 1, 2, ..., n).$$

It follows from the generalized least-squares theorem (Aitken, 1935; Lloyd, 1952) that the best linear unbiased estimates of μ and σ are those quantities that minimize the quadratic form $(y-\mu 1-\sigma m)' V^{-1}(y-\mu 1-\sigma m)$, where 1' = (1,1,...,1). These estimates are, respectively,

and

$$\hat{\mu} = \frac{m'V^{-1}(m1' - 1m')V^{-1}y}{1'V^{-1}1m'V^{-1}m - (1'V^{-1}m)^2}$$

$$\hat{\sigma} = \frac{1'V^{-1}(1m' - m1')V^{-1}y}{1'V^{-1}1m'V^{-1}m - (1'V^{-1}m)^2}$$

For symmetric distributions, $1'V^{-1}m = 0$, and hence

$$\begin{split} \hat{\mu} &= \frac{1}{n} \sum_{1}^{n} y_i = \overline{y}, \quad \text{and} \quad \hat{\sigma} &= \frac{m' V^{-1} y}{m' V^{-1} m}.\\ S^2 &= \sum_{1}^{n} (y_i - \overline{y})^2 \end{split}$$

Let

denote the usual symmetric unbiased estimate of $(n-1)\sigma^2$.

The W test statistic for normality is defined by

$$W = \frac{R^4 \hat{\sigma}^2}{C^2 S^2} = \frac{b^2}{S^2} = \frac{(a'y)^2}{S^2} = \left(\sum_{i=1}^n a_i y_i\right)^2 / \sum_{i=1}^n (y_i - \overline{y})^2,$$

where

$$\begin{split} R^2 &= m' V^{-1} m, \\ C^2 &= m' V^{-1} V^{-1} m, \\ a' &= (a_1, \dots, a_n) = \frac{m' V^{-1}}{(m' V^{-1} V^{-1} m)^{\frac{1}{2}}} \\ b &= R^2 \hat{\sigma} / C. \end{split}$$

and

Thus, b is, up to the normalizing constant C, the best linear unbiased estimate of the slope of a linear regression of the ordered observations, y_i , on the expected values, m_i , of the standard normal order statistics. The constant C is so defined that the linear coefficients are normalized.

It may be noted that if one is indeed sampling from a normal population then the numerator, b^2 , and denominator, S^2 , of W are both, up to a constant, estimating the same quantity, namely σ^2 . For non-normal populations, these quantities would not in general be estimating the same thing. Heuristic considerations augmented by some fairly extensive empirical sampling results (Shapiro & Wilk, 1964*a*) using populations with a wide range of $\sqrt{\beta_1}$ and β_2 values, suggest that the mean values of W for non-null distributions tends to shift to the left of that for the null case. Further it appears that the variance of the null distribution of W tends to be smaller than that of the non-null distribution. It is likely that this is due to the positive correlation between the numerator and denominator for a normal population being greater than that for non-normal populations.

Note that the coefficients $\{a_i\}$ are just the normalized 'best linear unbiased' coefficients tabulated in Sarhan & Greenberg (1956).

2.3. Some analytical properties of W

LEMMA 1. W is scale and origin invariant

Proof. This follows from the fact that for normal (more generally symmetric) distributions,

$$-a_i = a_{n-i+1}$$

COROLLARY 1. W has a distribution which depends only on the sample size n, for samples from a normal distribution.

COROLLARY 2. W is statistically independent of S^2 and of \overline{y} , for samples from a normal distribution.

Proof. This follows from the fact that \overline{y} and S^2 are sufficient for μ and σ^2 (Hogg & Craig, 1956).

COROLLARY 3. $EW^r = Eb^{2r}/ES^{2r}$, for any r.

LEMMA 2. The maximum value of W is 1.

Proof. Assume $\bar{y} = 0$ since W is origin invariant by Lemma 1. Hence

$$W = [\sum_{i} a_i y_i]^2 / \sum_{i} y_i^2.$$

Since

$$(\underset{i}{\Sigma}a_{i}y_{i})^{2}\leqslant\underset{i}{\Sigma}a_{i}^{2}\underset{i}{\Sigma}y_{i}^{2}=\underset{i}{\Sigma}y_{i}^{2},$$

because $\sum_{i} a_i^2 = a'a = 1$, by definition, then W is bounded by 1. This maximum is in fact achieved when $y_i = \eta a_i$, for arbitrary η .

LEMMA 3. The minimum value of W is $na_1^2/(n-1)$.

Proof. \dagger (Due to C. L. Mallows.) Since W is scale and origin invariant, it suffices to consider the maximization of $\sum_{i=1}^{n} y_i^2$ subject to the constraints $\Sigma y_i = 0$, $\Sigma a_i y_i = 1$. Since this is a convex region and Σy_i^2 is a convex function, the maximum of the latter must occur at one of the (n-1) vertices of the region. These are

$$\begin{split} & \Big(\frac{(n-1)}{na_1}, \frac{-1}{na_1}, \dots \frac{-1}{na_1}\Big) \\ & \Big(\frac{n-2}{n(a_1+a_2)}, \frac{(n-2)}{n(a_1+a_2)}, \frac{-2}{n(a_1+a_2)}, \dots, \frac{-2}{n(a_1+a_2)}\Big) \\ & \vdots \\ & \Big(\frac{1}{n(a_1+\dots+a_{n-1})}, \frac{1}{n(a_1+\dots+a_{n-1})}, \dots, \frac{-(n-1)}{n(a_1+\dots+a_{n-1})}\Big). \end{split}$$

It can now be checked numerically, for the values of the specific coefficients $\{a_i\}$, that the maximum of $\sum_{i=1}^{n} y_{1}^{2}$ occurs at the first of these points and the corresponding minimum value of W is as given in the Lemma.

LEMMA 4. The half and first moments of W are given by

and
$$EW^{\frac{1}{2}} = rac{R^2 \Gamma\{\frac{1}{2}(n-1)\}}{C\Gamma(\frac{1}{2}n) \sqrt{2}}$$

 $EW = rac{R^2(R^2+1)}{C^2(n-1)},$

where $R^2 = m' V^{-1}m$, and $C^2 = m' V^{-1} V^{-1}m$.

Proof. Using Corollary 3 of Lemma 1,

$$EW^{rac{1}{2}} = Eb/ES \quad ext{and} \quad EW = Eb^2/ES^2.$$
 $ES = \sigma \sqrt{2} \Gamma\left(rac{n}{2}
ight) ig/ \Gamma\left(rac{n-1}{2}
ight) \quad ext{and} \quad ES^2 = (n-1) \, \sigma^2.$

From the general least squares theorem (see e.g. Kendall & Stuart, vol. II (1961)),

$$egin{aligned} Eb &= rac{R^2}{C} E \widehat{\sigma} &= rac{R^2}{C} \sigma \ Eb^2 &= rac{R^4}{C^2} E \widehat{\sigma}^2 &= rac{R^4}{C^2} \{ ext{var} \, (\widehat{\sigma}) + (E \widehat{\sigma})^2 \} \ &= \sigma^2 R^2 \, (R^2 + 1) / C^2, \end{aligned}$$

and

Now,

since var $(\hat{\sigma}) = \sigma^2/m' V^{-1}m = \sigma^2/R^2$, and hence the results of the lemma follow.

Values of these moments are shown in Fig. 1 for sample sizes n = 3(1) 20.

LEMMA 5. A joint distribution involving W is defined by

$$h(W, \theta_2, \dots, \theta_{n-2}) = KW^{-\frac{1}{2}}(1-W)^{\frac{1}{2}(n-4)}\cos^{n-4}\theta_2 \dots \cos^{n-4}\theta_n$$

over a region T on which the θ_i 's and W are not independent, and where K is a constant.

† Lemma 3 was conjectured intuitively and verified by certain numerical studies. Subsequently the above proof was given by C. L. Mallows.

Proof. Consider an orthogonal transformation B such that y = Bu, where

$$u_1 = \sum_{i=1}^n y_i / \sqrt{n}$$
 and $u_2 = \lim_{i=1}^n a_i y_i = b$.

The ordered y_i 's are distributed as

$$n! \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}n} \exp\left\{-\frac{1}{2}\sum_i \left(\frac{y_i - \mu}{\sigma}\right)^2\right\} \quad (-\infty < y_1 < \ldots < y_n < \infty)$$

After integrating out, u_1 , the joint density for u_2, \ldots, u_n is

$$K^* \exp\left\{-rac{1}{2\sigma^2}\sum_{i=2}^n u_i^2
ight\}$$

over the appropriate region T^* . Changing to polar co-ordinates such that

$$u_2 = \rho \sin \theta_1$$
, etc,

and then integrating over $\rho,$ yields the joint density of $\theta_1, \ldots, \theta_{n-2}$ as

$$K^{**}\cos^{n-3}\theta_1\cos^{n-4}\theta_2\ldots\cos\theta_{n-3},$$

over some region T^{**} .

From these various transformations

$$W = \frac{b^2}{S^2} = \frac{u_2^2}{\sum_{i=1}^n u_i^2} = \frac{\rho^2 \sin^2 \theta_1}{\rho^2} = \sin^2 \theta_1,$$

from which the lemma follows. The θ_i 's and W are not independent, they are restricted in the sample space T.

Fig. 1. Moments of W, $E(W^r)$, n = 3(1)20, $r = \frac{1}{2}$, 1.

COROLLARY 4. For n = 3, the density of W is

$$\frac{3}{\pi}(1-W)^{-\frac{1}{2}}W^{-\frac{1}{2}}, \quad \frac{3}{4} \leqslant W \leqslant 1.$$

Note that for n = 3, the W statistic is equivalent (up to a constant multiplier) to the statistic (range/standard deviation) advanced by David, Hartley & Pearson (1954) and the result of the corollary is essentially given by Pearson & Stephens (1964).

It has not been possible, for general n, to integrate out of the θ_i 's of Lemma 5 to obtain an explicit form for the distribution of W. However, explicit results have also been given for n = 4, Shapiro (1964).

2.4. Approximations associated with the W test

The $\{a_i\}$ used in the W statistic are defined by

$$a_i = \sum_{j=1}^n m_j v^{ij} / C$$
 $(j = 1, 2, ..., n)_j$

where m_j , v_{ij} and C have been defined in §2.2. To determine the a_i directly it appears necessary to know both the vector of means m and the covariance matrix V. However, to date, the elements of V are known only up to samples of size 20 (Sarhan & Greenberg, 1956). Various approximations are presented in the remainder of this section to enable the use of W for samples larger than 20.

By definition,

$$a = \frac{m'V^{-1}}{(m'V^{-1}V^{-1}m)^{\frac{1}{2}}} = \frac{m'V^{-1}}{C}$$

is such that a'a = 1. Let $a^* = m'V^{-1}$, then $C^2 = a^{*'}a^*$. Suggested approximations are

$$\hat{a}_{i}^{*} = 2m_{i} \quad (i = 2, 3, ..., n-1),$$
 $\hat{a}_{1}^{2} = \hat{a}_{n}^{2} = \begin{cases} \frac{\Gamma(\frac{1}{2}n)}{\sqrt{2} \Gamma\{\frac{1}{2}(n+1)\}} & (n \leq 20), \\ \frac{\Gamma\{\frac{1}{2}(n+1)\}}{\sqrt{2} \Gamma(\frac{1}{2}n+1)} & (n > 20). \end{cases}$

and

A comparison of a_i^* (the exact values) and \hat{a}_i^* for various values of $i \neq 1$ and n = 5, 10, 15, 20 is given in Table 1. (Note $a_i = -a_{n-i+1}$.) It will be seen that the approximation is generally in error by less than 1%, particularly as n increases. This encourages one to trust the use of this approximation for n > 20. Necessary values of the m_i for this approximation are available in Harter (1961).

Table 1. Comparison of $|a_i^*|$ and $|\hat{a}_i^*| = |2m_i|$, for selected values of $i(\neq 1)$ and n

n	i =	2	3	4	5	8	10
5	Exact	1.014	0.0				
	Approx.	0.990	0.0				
10	Exact	$2 \cdot 035$	1.324	0.757	0.247		
	Approx.	$2 \cdot 003$	1.312	0.752	0.245		
15	Exact	2.530	1.909	1.437	1.036	0.0	<u></u>
	Approx.	$2 \cdot 496$	1.895	1.430	1.031	0.0	
20	Exact	2.849	2.277	1.850	1.496	0.631	0.124
	Approx.	2.815	$2 \cdot 262$	1.842	1.491	0.630	0.124

A comparison of a_1^2 and \hat{a}_1^2 for n = 6(1) 20 is given in Table 2. While the errors of this approximation are quite small for $n \leq 20$, the approximation and true values appear to cross over at n = 19. Further comparisons with other approximations, discussed below, suggested the changed formulation of \hat{a}_1^2 for n > 20 given above.

Table 2. Comparison of a_1^2 and \hat{a}_1^2

What is required for the W test are the normalized coefficients $\{a_i\}$. Thus \hat{a}_1^2 is directly usable but the \hat{a}_i^* (i = 2, ..., n-1), must be normalized by division by $C = (m'V^{-1}V^{-1}m)^{\frac{1}{2}}$.

A plot of the values of C^2 and of $R^2 = m'V^{-1}m$ as a function of n is given in Fig. 2. The linearity of these may be summarized by the following least-squares equations:

$$C^2 = -2.722 + 4.083n,$$

which gave a regression mean square of 7331.6 and a residual mean square of 0.0186, and

$$R^2 = -2.411 + 1.981n,$$

with a regression mean square of 1725.7 and a residual mean square of 0.0016.

38

Biom. 52

These results encourage the use of the extrapolated equations to estimate C^2 and R^2 for higher values of n.

A comparison can now be made between values of C^2 from the extrapolation equation and from $\sum_{i=1}^{n} \hat{a}_i^{*2}$, using

$$\hat{a}_1^{*2} = \frac{\hat{a}_1^2}{1 - 2\hat{a}_1^2} \sum_{2}^{n-1} \hat{a}_i^{*2}.$$

For the case n = 30, these give values of 119.77 and 120.47, respectively. This concordance of the independent approximations increases faith in both.

Plackett (1958) has suggested approximations for the elements of the vector a and R^2 . While his approximations are valid for a wide range of distributions and can be used with censored samples, they are more complex, for the normal case, than those suggested above. For the normal case his approximations are

$$\begin{split} \tilde{a}_{j}^{*} &= nm_{j}[F(m_{j+1}) - F(m_{j-1})] \quad (j = 2, 3, \dots, n-1), \\ \tilde{a}_{j}^{*} &= n \left\{ \frac{m_{j}f(m_{j})^{2}}{F(m_{j})} + m_{j}^{2}f(m_{j}) - f(m_{j}) + m_{j}[F(m_{j+1}) - F(m_{j})] \right\} \quad (j = 1), \end{split}$$

where

and

 $F(m_i) =$ cumulative distribution evaluated at m_i ,

 $f(m_j) =$ density function evaluated at m_j ,

$$\tilde{a}_1^* = -\tilde{a}_n^*.$$

Plackett's approximation to R^2 is

$$\tilde{R}^2 = 2 \left\{ \frac{m_1^2 f(m_1)^2}{F(m_1)} + m_1^3 f(m_1) + m_1 f(m_1) - 2F(m_1) + 1 \right\}.$$

Plackett's \tilde{a}_i^* approximations and the present \hat{a}_i^* approximations are compared with the exact values, for sample size 20, in Table 3. In addition a consistency comparison of the two approximations is given for sample size 30. Plackett's result for a_1 (n = 20) was the only case where his approximation was closer to the true value than the simpler approximations suggested above. The differences in the two approximations for a_1 were negligible, being less than 0.5 %. Both methods give good approximations, being off no more than three units in the second decimal place. The comparison of the two methods for n = 30 shows good agreement, most of the differences being in the third decimal place. The largest discrepancy occurred for i = 2; the estimates differed by six units in the second decimal place, an error of less than 2%.

The two methods of approximating R^2 were compared for n = 20. Plackett's method gave a value of 36.09, the method suggested above gave a value of 37.21 and the true value was 37.26.

The good practical agreement of these two approximations encourages the belief that there is little risk in reasonable extrapolations for n > 20. The values of constants, for n > 20, given in §3 below, were estimated from the simple approximations and extrapolations described above.

As a further internal check the values of a_n , a_{n-1} and a_{n-4} were plotted as a function of n for n = 3(1)50. The plots are shown in Fig. 3 which is seen to be quite smooth for each of the three curves at the value n = 20. Since values for $n \leq 20$ are 'exact' the smooth transition lends credence to the approximations for n > 20.

An analysis of variance test for normality

n	i	Present approx.	Exact	Plackett
20	1	-4.223	-4.2013	-4.212
	2	-2.812	-2.8494	-2.764
	3	-2.262	-2.2765	-2.237
	4	-1.842	-1.8502	-1.820
	5	-1.491	-1.4960	-1.476
	6	-1.181	-1.1841	-1.169
	7	-0.897	-0.8990	-0.887
	8	-0.630	-0.6314	-0.622
	9	-0.374	-0.3784	-0.370
	10	-0.124	-0.1243	-0.123
30	1	-4.655		-4.671
	2	-3.231		-3.170
	3	-2.730		-2.768
	4	-2.357		-2.369
	5	-2.052		-2.013
	6	-1.789		-1.760
	7	-1.553		-1.528
	8	-1.338		-1.334
	9	-1.132		-1.132
	10	-0.947		-0.941
	11	-0.765	Barrow	-0.759
	12	-0.589		-0.582
	13	-0.418		-0.413
	14	-0.249		-0.249
	15	-0.083		-0.082

Table 3. Comparison of approximate values of $a^* = m'V^{-1}$

38-2

This content downloaded from 213.227.88.32 on Wed, 09 Jan 2019 21:21:39 UTC All use subject to https://about.jstor.org/terms

Fig. 4. Empirical C.D.F. of W for n = 5, 10, 15, 20, 35, 50.

Fig. 5. Selected empirical percentage points of W, n = 3(1)50.

An analysis of variance test for normality

n	$\mu_{\frac{1}{2}}$	$\hat{\mu}_{rac{1}{2}}$	μ_1	$\hat{\mu}_1$	$\hat{\mu}_2$	$\hat{\mu}_3/\hat{\mu}_2^{rac{3}{2}}$	$\hat{\mu}_4/\hat{\mu}_2^2$
3	0.9549	0.9547	0.9135	0.9130	0.005698	-0.5930	2.3748
4	·9486	·9489	·9012	·9019	·005166	8944	3.7231
5	$\cdot 9494$	·9491	·9026	·9021	$\cdot 004491$	8176	7.8126
6	0.9521	0.9525	0.9072	0.9082	0.003390	-1.1790	5.4295
7	$\cdot 9547$	$\cdot 9545$	$\cdot 9123$	$\cdot 9120$	$\cdot 002995$	-1.3229	6.4104
8	$\cdot 9574$	$\cdot 9575$	$\cdot 9174$	$\cdot 9175$	$\cdot 002470$	-1.3841	$7 \cdot 1092$
9	·9600	$\cdot 9596$	$\cdot 9221$	$\cdot 9215$	$\cdot 002293$	-1.5987	8.4482
10	$\cdot 9622$	$\cdot 9620$	$\cdot 9264$	$\cdot 9260$	$\cdot 001972$	-1.6655	9.2812
11	0.9643	0.9639	0.9303	0.9295	0.001717	-1.7494	11.0547
12	·9661	$\cdot 9661$	$\cdot 9337$.9338	$\cdot 001483$	-1.7744	11.9185
13	.9678	.9678	$\cdot 9369$	$\cdot 9369$	$\cdot 001316$	-1.7581	13.0769
14	$\cdot 9692$	$\cdot 9693$.9398	.9399	$\cdot 001168$	-1.9025	14.0568
15	$\cdot 9706$	$\cdot 9705$	$\cdot 9424$	$\cdot 9422$	$\cdot 001023$	-1.8876	16.7383
16	0.9718	0.9717	0.9447	0.9445	0.000964	-1.7968	17.6669
17	$\cdot 9730$	$\cdot 9730$	$\cdot 9470$	$\cdot 9470$	$\cdot 000823$	-1.9468	$22 \cdot 1972$
18	$\cdot 9741$	$\cdot 9741$	$\cdot 9491$	$\cdot 9492$	·000810	-2.1391	24.7776
19	$\cdot 9750$	$\cdot 9750$	$\cdot 9508$	$\cdot 9509$	$\cdot 000711$	-2.1302	29.7333
20	·9757	·9760	$\cdot 9523$	$\cdot 9527$	$\cdot 000651$	-2.2761	$32 \cdot 5906$
21		0.9771		0.9549	0.000594	-2.2827	36.0382
22		$\cdot 9776$		$\cdot 9558$	$\cdot 000568$	-2.3984	$44 \cdot 5617$
23		$\cdot 9782$		$\cdot 9570$	$\cdot 000504$	-2.1862	40.7507
24		$\cdot 9787$		$\cdot 9579$	$\cdot 000504$	-2.3517	$43 \cdot 4926$
25		$\cdot 9789$		$\cdot 9584$	$\cdot 000458$	-2.3448	46.3318
26		0.9796		0.9598	0.000421	-2.4978	58.9446
27		$\cdot 9801$		$\cdot 9607$	$\cdot 000404$	-2.5903	60.5200
28		$\cdot 9805$		$\cdot 9615$	$\cdot 000382$	-2.6964	$64 \cdot 1702$
29		.9810		$\cdot 9624$	$\cdot 000369$	-2.6090	$68 \cdot 9591$
30		.9811		·9626	$\cdot 000344$	-2.7288	71.7714
31		0.9816		0.9636	0.000336	-2.7997	77.4744
32		.9819		$\cdot 9642$	$\cdot 000326$	-2.6900	76.8384
33		$\cdot 9823$		$\cdot 9650$	·000308	-3.0181	$93 \cdot 2496$
34		$\cdot 9825$		$\cdot 9654$	$\cdot 000293$	-3.0166	100.4419
35		$\cdot 9827$.9658	$\cdot 000268$	-2.8574	$108 \cdot 5077$
36		0.9829		0.9662	0.000264	-2.7965	91.7985
37		·9833		$\cdot 9670$	$\cdot 000253$	-3.1566	120.0005
38		$\cdot 9837$		$\cdot 9677$	$\cdot 000235$	-3.0679	$118 \cdot 2513$
39		.9837		$\cdot 9678$	$\cdot 000239$	-3.3283	$134 \cdot 3110$
40		.9839	And the second se	$\cdot 9682$	$\cdot 000229$	-3.1719	$136 \cdot 4787$
41		0.9840		0.9684	0.000227	-3.0740	129.9604
42		·9844		.9691	$\cdot 000212$	-3.2885	$136 \cdot 3814$
43		$\cdot 9846$		$\cdot 9694$	·000196	-3.2646	151.7350
44		·9846		.9695	$\cdot 000193$	-3.0803	140.2724
45		$\cdot 9849$	_	$\cdot 9701$	·000192	-3.1645	$137 \cdot 2297$
46		0.9850		0.9703	0.000184	-3.3742	176.0635
47		·9854		·9710	·000170	- 3.3353	179.2792
48		•9853		·9708	·000179	-3.2972	173.6601
4 9		·9855		·9712	·000165	-3.2810	183.9433
50		·9855		·9714	$\cdot 000154$	-3.3240	$212 \cdot 4279$

Table 4. Some theoretical moments (μ_i) and Monte Carlo moments $(\hat{\mu}_i)$ of W

2.5. Approximation to the distribution of W

The complexity in the domain of the joint distribution of W and the angles $\{\theta_i\}$ in Lemma 5 necessitates consideration of an approximation to the null distribution of W. Since only the first and second moments of normal order statistics are, practically, available, it follows that only the one-half and first moments of W are known. Hence a technique such as the Cornish–Fisher expansion cannot be used.

In the circumstance it seemed both appropriate and efficient to employ empirical sampling to obtain an approximation for the null distribution.

Accordingly, normal random samples were obtained from the Rand Tables (Rand Corp. (1955)). Repeated values of W were computed for n = 3(1)50 and the empirical percentage points determined for each value of n. The number of samples, m, employed was as follows:

for
$$n = 3(1) 20$$
, $m = 5000$,
 $n = 21(1) 50$, $m = \left[\frac{100,000}{n}\right]$

Fig. 4 gives the empirical C.D.F.'s for values of n = 5, 10, 15, 20, 35, 50. Fig. 5 gives a plot of the 1, 5, 10, 50, 90, 95, and 99 empirical percentage points of W for n = 3(1)50.

A check on the adequacy of the sampling study is given by comparing the empirical one-half and the first moments of the sample with the corresponding theoretical moments of W for n = 3(1) 20. This comparison is given in Table 4, which provides additional assurance of the adequacy of the sampling study. Also in Table 4 are given the sample variance and the standardized third and fourth moments for n = 3(1) 50.

After some preliminary investigation, the S_B system of curves suggested by Johnson (1949) was selected as a basis for smoothing the empirical null W distribution. Details of this procedure and its results are given in Shapiro & Wilk (1965*a*). The tables of percentage points of W given in §3 are based on these smoothed sampling results.

3. Summary of operational information

The objective of this section is to bring together all the tables and descriptions needed to execute the W test for normality. This section may be employed independently of notational or other information from other sections.

The object of the W test is to provide an index or test statistic to evaluate the supposed normality of a complete sample. The statistic has been shown to be an effective measure of normality even for small samples (n < 20) against a wide spectrum of non-normal alternatives (see §5 below and Shapiro & Wilk (1964*a*)).

The W statistic is scale and origin invariant and hence supplies a test of the composite null hypothesis of normality.

To compute the value of W, given a complete random sample of size $n, x_1, x_2, ..., x_n$, one proceeds as follows:

(i) Order the observations to obtain an ordered sample $y_1 \leq y_2 \leq \ldots \leq y_n$.

(ii) Compute

$$S^{2} = \sum_{1}^{n} (y_{i} - \overline{y})^{2} = \sum_{1}^{n} (x_{i} - \overline{x})^{2}.$$

(iii) (a) If n is even, n = 2k, compute

$$b = \sum_{i=1}^{k} a_{n-i+1} (y_{n-i+1} - y_i)$$

where the values of a_{n-i+1} are given in Table 5.

(b) If n is odd, n = 2k + 1, the computation is just as in (iii) (a), since $a_{k+1} = 0$ when n = 2k + 1. Thus one finds

$$b = a_n(y_n - y_1) + \ldots + a_{k+2}(y_{k+2} - y_k),$$

where the value of y_{k+1} , the sample median, does not enter the computation of b.

(iv) Compute $W = b^2/S^2$.

(v) 1, 2, 5, 10, 50, 90, 95, 98 and 99 % points of the distribution of W are given in Table 6. Small values of W are significant, i.e. indicate non-normality.

(vi) A more precise significance level may be associated with an observed W value by using the approximation detailed in Shapiro & Wilk (1965*a*).

Table 5. Coefficients $\{a_{n-i+1}\}$ for the W test for normality, for n = 2(1)50.

i^n	2	3	4	5	6	7	8	9	10	
1	0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739	
2		.0000	$\cdot 1677$	$\cdot 2413$	·2806	·3031	·3164	·3244	·3291	
3				·0000	.0875	·1401	$\cdot 1743$	$\cdot 1976$	$\cdot 2141$	
4						·0000	$\cdot 0561$	$\cdot 0947$	$\cdot 1224$	
5		—					—	·0000	.0399	
\sum_{i}^{n}	11	12	13	14	15	16	17	18	19	20
1	0.5601	0.5475	0.5359	0.5251	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	$\cdot 3315$	$\cdot 3325$	·3325	·3318	·3306	·3290	·3273	·3253	·3232	·3211
3	$\cdot 2260$	$\cdot 2347$	$\cdot 2412$	$\cdot 2460$	$\cdot 2495$	$\cdot 2521$	$\cdot 2540$	$\cdot 2553$	·2561	$\cdot 2565$
4	$\cdot 1429$	$\cdot 1586$	$\cdot 1707$	$\cdot 1802$	$\cdot 1878$	$\cdot 1939$	$\cdot 1988$	$\cdot 2027$	$\cdot 2059$	·2085
5	.0695	$\cdot 0922$	$\cdot 1099$	$\cdot 1240$	$\cdot 1353$	$\cdot 1447$	$\cdot 1524$	$\cdot 1587$	$\cdot 1641$	·1686
6	0.0000	0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.1197	0.1271	0.1334
7		_	·0000	$\cdot 0240$	$\cdot 0433$	$\cdot 0593$	$\cdot 0725$	$\cdot 0837$	$\cdot 0932$	·101 3
8					·0000	.0196	$\cdot 0359$	$\cdot 0496$	$\cdot 0612$.0711
9							·0000	$\cdot 0163$	$\cdot 0303$	$\cdot 0422$
10									·0000	·0140
\sum_{i}^{n}	21	22	23	24	25	26	27	28	29	30
1	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407	0.4366	0.4328	0.4291	0.4254
2	$\cdot 3185$	$\cdot 3156$	$\cdot 3126$	$\cdot 3098$	$\cdot 3069$	$\cdot 3043$	$\cdot 3018$	$\cdot 2992$	$\cdot 2968$	·2944
3	$\cdot 2578$	$\cdot 2571$	$\cdot 2563$	$\cdot 2554$	$\cdot 2543$	$\cdot 2533$	$\cdot 2522$	$\cdot 2510$	$\cdot 2499$	$\cdot 2487$
4	$\cdot 2119$	$\cdot 2131$	$\cdot 2139$	$\cdot 2145$	$\cdot 2148$	$\cdot 2151$	$\cdot 2152$	$\cdot 2151$	$\cdot 2150$	$\cdot 2148$
5	$\cdot 1736$	$\cdot 1764$	$\cdot 1787$	$\cdot 1807$	$\cdot 1822$	$\cdot 1836$	$\cdot 1848$	$\cdot 1857$	$\cdot 1864$	$\cdot 1870$
6	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563	0.1584	0.1601	0.1616	0.1630
7	$\cdot 1092$	$\cdot 1150$	$\cdot 1201$	$\cdot 1245$	$\cdot 1283$	$\cdot 1316$	$\cdot 1346$	$\cdot 1372$	$\cdot 1395$	$\cdot 1415$
8	$\cdot 0804$.0878	$\cdot 0941$	$\cdot 0997$	$\cdot 1046$	·1089	$\cdot 1128$	$\cdot 1162$	$\cdot 1192$	$\cdot 1219$
9	$\cdot 0530$	$\cdot 0618$	·0696	$\cdot 0764$	$\cdot 0823$	$\cdot 0876$	$\cdot 0923$	$\cdot 0965$	$\cdot 1002$	$\cdot 1036$
10	$\cdot 0263$.0368	$\cdot 0459$	$\cdot 0539$.0610	$\cdot 0672$	$\cdot 0728$.0778	$\cdot 0822$	$\cdot 0862$
11	0.0000	0.0122	0.0228	0.0321	0.0403	0.0476	0.0540	0.0598	0.0650	0.0697
12			·0000	$\cdot 0107$	$\cdot 0200$	$\cdot 0284$	$\cdot 0358$	$\cdot 0424$	$\cdot 0483$	$\cdot 0537$
13		11. Taxa			·0000	$\cdot 0094$.0178	$\cdot 0253$	$\cdot 0320$.0381
14							·0000	$\cdot 0084$.0159	$\cdot 0227$
15									·0000	$\cdot 0076$

Table 5.	Coefficients {	$\{a_{n-i+1}\}$ for	the W	test for	normality,	
	for	n = 2(1)50	(cont.)			

\sum_{i}^{n}	31	32	33	34	35	36	37	38	39	40
1	0.4220	0.4188	0.4156	0.4127	0.4096	0.4068	0.4040	0.4015	0.3989	0.3964
2	·2921	·2898	$\cdot 2876$	$\cdot 2854$	$\cdot 2834$	$\cdot 2813$	$\cdot 2794$	$\cdot 2774$	$\cdot 2755$	·2737
3	$\cdot 2475$	$\cdot 2463$	$\cdot 2451$	$\cdot 2439$	$\cdot 2427$	$\cdot 2415$	$\cdot 2403$	$\cdot 2391$	$\cdot 2380$	$\cdot 2368$
4	$\cdot 2145$	$\cdot 2141$	$\cdot 2137$	$\cdot 2132$	$\cdot 2127$	$\cdot 2121$	$\cdot 2116$	·2110	$\cdot 2104$	$\cdot 2098$
5	$\cdot 1874$	$\cdot 1878$	·1880	$\cdot 1882$	$\cdot 1883$	$\cdot 1883$	$\cdot 1883$	$\cdot 1881$	$\cdot 1880$	$\cdot 1878$
6	0.1641	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	$\cdot 1433$	$\cdot 1449$	$\cdot 1463$	$\cdot 1475$	$\cdot 1487$	$\cdot 1496$	$\cdot 1505$	$\cdot 1513$	$\cdot 1520$	$\cdot 1526$
8	$\cdot 1243$	$\cdot 1265$	$\cdot 1284$	$\cdot 1301$	$\cdot 1317$	$\cdot 1331$	$\cdot 1344$	$\cdot 1356$	$\cdot 1366$	$\cdot 1376$
9	$\cdot 1066$	$\cdot 1093$.1118	$\cdot 1140$	$\cdot 1160$	$\cdot 1179$	$\cdot 1196$	$\cdot 1211$	$\cdot 1225$	$\cdot 1237$
10	·0899	.0931	$\cdot 0961$.0988	$\cdot 1013$	$\cdot 1036$	$\cdot 1056$	$\cdot 1075$	$\cdot 1092$	$\cdot 1108$
11	0.0739	0.0777	0.0812	0.0844	0.0873	0.0900	0.0924	0.0947	0.0967	0.0986
12	.0585	$\cdot 0629$	·0669	.0706	.0739	.0770	$\cdot 0798$	$\cdot 0824$.0848	$\cdot 0870$
13	$\cdot 0435$	$\cdot 0485$	$\cdot 0530$	$\cdot 0572$.0610	$\cdot 0645$	$\cdot 0677$	$\cdot 0706$	$\cdot 0733$.0759
14	.0289	$\cdot 0344$	$\cdot 0395$	$\cdot 0441$	$\cdot 0484$	·0523	.0559	$\cdot 0592$	$\cdot 0622$.0651
15	·0144	$\cdot 0206$	$\cdot 0262$.0314	$\cdot 0361$	$\cdot 0404$	$\cdot 0444$	$\cdot 0481$	$\cdot 0515$	$\cdot 0546$
16	0.0000	0.0068	0.0131	0.0187	0.0239	0.0287	0.0331	0.0372	0.0409	0.0444
17			·0000	$\cdot 0062$	·0119	$\cdot 0172$	$\cdot 0220$	$\cdot 0264$	$\cdot 0305$	$\cdot 0343$
18					·0000	$\cdot 0057$	·0110	$\cdot 0158$	$\cdot 0203$	$\cdot 0244$
19							·0000	$\cdot 0053$	·0101	.0146
20									·0000	.0049
$\sum_{i=1}^{n}$	41	42	43	44	45	46	47	48	49	50
1	0.3940	0.3917	0.3894	0.3872	0.3850	0.3830	0.3808	0.3789	0.3770	0.3751
2	·2719	·2701	·2684	•2667	·2651	·2635	·2620	·2604	·2589	·2574
3	$\cdot 2357$	·2345	·2334	·2323	·2313	$\cdot 2302$	$\cdot 2291$	$\cdot 2281$	$\cdot 2271$	$\cdot 2260$
4	·2091	$\cdot 2085$	·2078	$\cdot 2072$	$\cdot 2065$	$\cdot 2058$	$\cdot 2052$	$\cdot 2045$	·2038	$\cdot 2032$
5	·1876	$\cdot 1874$	·1871	·1868	$\cdot 1865$	$\cdot 1862$	$\cdot 1859$	$\cdot 1855$	$\cdot 1851$	$\cdot 1847$
6	0.1693	0.1694	0.1695	0.1695	0.1695	0.1695	0.1695	0.1693	0.1692	0.1691
7	$\cdot 1531$	$\cdot 1535$	$\cdot 1539$	$\cdot 1542$	$\cdot 1545$	$\cdot 1548$	$\cdot 1550$	$\cdot 1551$	$\cdot 1553$	$\cdot 1554$
8	$\cdot 1384$	$\cdot 1392$	·1398	$\cdot 1405$	·1410	$\cdot 1415$	$\cdot 1420$	$\cdot 1423$	$\cdot 1427$	$\cdot 1430$
9	$\cdot 1249$	$\cdot 1259$	$\cdot 1269$	$\cdot 1278$	$\cdot 1286$	$\cdot 1293$	$\cdot 1300$	$\cdot 1306$	$\cdot 1312$	$\cdot 1317$
10	$\cdot 1123$	$\cdot 1136$	·1149	$\cdot 1160$	$\cdot 1170$	$\cdot 1180$	·1189	$\cdot 1197$	$\cdot 1205$	$\cdot 1212$
11	0.1004	0.1020	0.1035	0.1049	0.1062	0.1073	0.1085	0.1095	0.1105	0.1113
12	.0891	·0909	$\cdot 0927$	$\cdot 0943$	$\cdot 0959$	$\cdot 0972$.0986	.0998	$\cdot 1010$	$\cdot 1020$
13	$\cdot 0782$	$\cdot 0804$	$\cdot 0824$	$\cdot 0842$	$\cdot 0860$	$\cdot 0876$	$\cdot 0892$	·0906	.0919	$\cdot 0932$
14	$\cdot 0677$	$\cdot 0701$	$\cdot 0724$	$\cdot 0745$	$\cdot 0765$	$\cdot 0783$.0801	.0817	$\cdot 0832$.0846
15	$\cdot 0575$	$\cdot 0602$	$\cdot 0628$	$\cdot 0651$. •0673	.0694	$\cdot 0713$	$\cdot 0731$	$\cdot 0748$	$\cdot 0764$
16	0.0476	0.0506	0.0534	0.0560	0.0584	0.0607	0.0628	0.0648	0.0667	0.0685
17	$\cdot 0379$	$\cdot 0411$	$\cdot 0442$	$\cdot 0471$	$\cdot 0497$	$\cdot 0522$	$\cdot 0546$	$\cdot 0568$.0588	.0608
18	$\cdot 0283$	$\cdot 0318$	$\cdot 0352$	$\cdot 0383$	$\cdot 0412$	$\cdot 0439$	$\cdot 0465$	$\cdot 0489$.0511	$\cdot 0532$
19	$\cdot 0188$	$\cdot 0227$	$\cdot 0263$	$\cdot 0296$	$\cdot 0328$	$\cdot 0357$	$\cdot 0385$	·0411	$\cdot 0436$	$\cdot 0459$
20	$\cdot 0094$	$\cdot 0136$	$\cdot 0175$	$\cdot 0211$	$\cdot 0245$	$\cdot 0277$	$\cdot 0307$	$\cdot 0335$	$\cdot 0361$.0386
21	0.0000	0.0045	0.0087	0.0126	0.0163	0.0197	0.0229	0.0259	0.0288	0.0314
22			·0000	$\cdot 0042$	$\cdot 0081$	·0118	$\cdot 0153$	$\cdot 0185$	$\cdot 0215$	$\cdot 0244$
23	—		—	—	·0000	$\cdot 0039$	·0076	·0111	·0143	·0174
24							·0000	·0037	·0071	·0104
25									·0000	$\cdot 0035$

					Level				
n	0.01	0.02	0.02	0.10	0.50	0.90	0.95	0.98	0.99
3	0.753	0.756	0.767	0.789	0.959	0.998	0.999	1.000	1.000
4	$\cdot 687$	$\cdot 707$	·748	$\cdot 792$	$\cdot 935$	$\cdot 987$	$\cdot 992$	·996	$\cdot 997$
5	·686	$\cdot 715$	·762	·806	$\cdot 927$	·979	·986	·991	.993
6	0.713	0.743	0.788	0.826	0.927	0.974	0.981	0.986	0.989
7	$\cdot 730$	$\cdot 760$	$\cdot 803$	$\cdot 838$	$\cdot 928$	$\cdot 972$	$\cdot 979$	$\cdot 985$	·988
8	·749	·778	·818	$\cdot 851$	$\cdot 932$	·972	$\cdot 978$	·984	·987
9	$\cdot 764$	$\cdot 791$	·829	$\cdot 859$	·935	$\cdot 972$	$\cdot 978$	$\cdot 984$	·986
10	$\cdot 781$	·806	$\cdot 842$	·869	.938	$\cdot 972$	$\cdot 978$	$\cdot 983$	·986
11	0.792	0.817	0.850	0.876	0.940	0.973	0.979	0.984	0.986
12	$\cdot 805$	$\cdot 828$	$\cdot 859$	$\cdot 883$	$\cdot 943$	$\cdot 973$	$\cdot 979$	·984	·986
13	$\cdot 814$	$\cdot 837$	·866	$\cdot 889$	$\cdot 945$	$\cdot 974$	$\cdot 979$	$\cdot 984$	·986
14	$\cdot 825$	$\cdot 846$	$\cdot 874$	$\cdot 895$	$\cdot 947$	$\cdot 975$	•980	$\cdot 984$	·986
15	$\cdot 835$	$\cdot 855$	·881	·901	$\cdot 950$	$\cdot 975$	·980	$\cdot 984$	$\cdot 987$
16	0.844	0.863	0.887	0.906	0.952	0.976	0.981	0.985	0.987
17	$\cdot 851$	$\cdot 869$	$\cdot 892$	$\cdot 910$	$\cdot 954$	$\cdot 977$	$\cdot 981$	$\cdot 985$	·987
18	$\cdot 858$	$\cdot 874$	$\cdot 897$	$\cdot 914$	$\cdot 956$	$\cdot 978$	$\cdot 982$	$\cdot 986$	·988
19	$\cdot 863$	$\cdot 879$	$\cdot 901$	$\cdot 917$	$\cdot 957$	$\cdot 978$	$\cdot 982$	$\cdot 986$	·988
20	·868	·884	$\cdot 905$	·920	$\cdot 959$	$\cdot 979$	·983	·986	•988
21	0.873	0.888	0.908	0.923	0.960	0.980	0.983	0.987	0.989
22	$\cdot 878$	$\cdot 892$	$\cdot 911$	$\cdot 926$	$\cdot 961$	·980	$\cdot 984$	·987	$\cdot 989$
23	·881	$\cdot 895$	$\cdot 914$	$\cdot 928$	$\cdot 962$	·981	$\cdot 984$	•987	·989
24	$\cdot 884$	$\cdot 898$	·916	·930	$\cdot 963$	$\cdot 981$	$\cdot 984$	$\cdot 987$	$\cdot 989$
25	·888	·901	.918	$\cdot 931$	$\cdot 964$	·981	$\cdot 985$	·988	·989
26	0.891	0.904	0.920	0.933	0.965	0.982	0.985	0.988	0.989
27	$\cdot 894$	·906	$\cdot 923$	$\cdot 935$	$\cdot 965$	$\cdot 982$	$\cdot 985$	$\cdot 988$	·990
28	·896	·908	$\cdot 924$	$\cdot 936$	$\cdot 966$	$\cdot 982$	$\cdot 985$	$\cdot 988$	·990
29	$\cdot 898$	·910	$\cdot 926$	$\cdot 937$	·966	$\cdot 982$	$\cdot 985$	$\cdot 988$	·990
30	·900	$\cdot 912$	$\cdot 927$.939	·967	·983	$\cdot 985$	·988	•900
31	0.902	0.914	0.929	0.940	0.967	0.983	0.986	0.988	0.990
32	$\cdot 904$	$\cdot 915$	·930	·941	·968	$\cdot 983$	·986	·988	·990
33	·906	$\cdot 917$	$\cdot 931$	$\cdot 942$	·968	$\cdot 983$	$\cdot 986$	·989	·990
34	·908	$\cdot 919$	$\cdot 933$	$\cdot 943$	·969	$\cdot 983$	$\cdot 986$	·989	·990
35	·910	$\cdot 920$	$\cdot 934$	$\cdot 944$	·969	·984	·986	•989	·990
36	0.912	0.922	0.935	0.945	0.970	0.984	0.986	0.989	0.990
37	.914	$\cdot 924$	$\cdot 936$	$\cdot 946$	·970	$\cdot 984$	$\cdot 987$.989	·990
38	·916	$\cdot 925$	$\cdot 938$	$\cdot 947$.971	$\cdot 984$.987	$\cdot 989$	·990
39	.917	$\cdot 927$	$\cdot 939$	$\cdot 948$.971	$\cdot 984$.987	$\cdot 989$.991
40	.919	$\cdot 928$	$\cdot 940$	$\cdot 949$	$\cdot 972$	$\cdot 985$	$\cdot 987$	$\cdot 989$	$\cdot 991$
41	0.920	0.929	0.941	0.950	0.972	0.985	0.987	0.989	0.991
42	$\cdot 922$	·930	$\cdot 942$.951	$\cdot 972$.985	$\cdot 987$	·989	·991
43	·923	$\cdot 932$	$\cdot 943$.951	$\cdot 973$	$\cdot 985$	·987	·990	.991
44	$\cdot 924$.933	$\cdot 944$	$\cdot 952$.973	$\cdot 985$	$\cdot 987$	·990	.991
45	·926	$\cdot 934$	$\cdot 945$	$\cdot 953$	$\cdot 973$	$\cdot 985$	·988	·990	$\cdot 991$
46	0.927	0.935	0.945	0.953	0.974	0.985	0.988	0.990	0.991
47	$\cdot 928$	$\cdot 936$	$\cdot 946$	$\cdot 954$	$\cdot 974$	$\cdot 985$	·988	·990	·991
48	$\cdot 929$	$\cdot 937$	$\cdot 947$	$\cdot 954$	$\cdot 974$	$\cdot 985$	·988	·990	·991
49	$\cdot 929$	$\cdot 937$	$\cdot 947$	$\cdot 955$	$\cdot 974$	$\cdot 985$	·988	·990	·991
50	·930	.938	.947	.955	$\cdot 974$	$\cdot 985$	·988	·990	·991

* Based on fitted Johnson (1949) S_B approximation, see Shapiro & Wilk (1965a) for details.

606

To illustrate the process, suppose a sample of 7 observations were obtained, namely $x_1 = 6, x_2 = 1, x_3 = -4, x_4 = 8, x_5 = -2, x_6 = 5, x_7 = 0.$

(i) Ordering, one obtains

$$y_1 = -4, y_2 = -2, y_3 = 0, y_4 = 1, y_5 = 5, y_6 = 6, y_7 = 8.$$

(ii) $S^2 = \sum y_i^2 - \frac{1}{7} (\sum y_i)^2 = 146 - 28 = 118.$

(iii) From Table 5, under n = 7, one obtains

$$a_7 = 0.6233, a_6 = 0.3031, a_5 = 0.1401, a_4 = 0.0000.$$

 $b = 0.6233(8+4) + 0.3031(6+2) + 0.1401(5-0) = 10.6049.$

Thus

(iv) $W = (10.6049)^2/118 = 0.9530$.

(v) Referring to Table 6, one finds the value of W to be substantially larger than the tabulated 50% point, which is 0.928. Thus there is no evidence, from the W test, of non-normality of this sample.

4. Examples

Example 1. Snedecor (1946, p. 175), makes a test of normality for the following sample of weights in pounds of 11 men: 148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236.

The W statistic is found to be 0.79 which is just below the 1 % point of the null distribution. This agrees with Snedecor's approximate application of the $\sqrt{b_1}$ statistic test.

Example 2. Kendall (1948, p. 194) gives an extract of 200 'random sampling numbers' from the Kendall-Babington Smith, *Tracts for Computers No.* 24. These were totalled, as number pairs, in groups of 10 to give the following sample of size 10: 303, 338, 406, 457, 461, 469, 474, 489, 515, 583.

The W statistic in this case has the value 0.9430, which is just above the 50 % point of the null distribution.

Example 3. Davies *et al.* (1956) give an example of a 2^5 experiment on effects of five factors on yields of penicillin. The 5-factor interaction is confounded between 2 blocks. Omitting the confounded effect the *ordered* effects are:

С	0.0958	ABC	0.0002
BC	$\cdot 0333$	CD	-0.0026
ACDE	$\cdot 0293$	В	-0.0036
BCE	$\cdot 0246$	BD	-0.0042
ACD	$\cdot 0206$	\mathbf{BCD}	-0.0113
ABCE	.0194	ABE	-0.0139
\mathbf{DE}	.0191	ABD	-0.0211
\mathbf{BE}	.0182	\mathbf{AC}	-0.0333
BDE	.0173	\mathbf{AD}	-0.0341
ADE	$\cdot 0132$	ACE	-0.0363
BCDE	$\cdot 0102$	ABCD	-0.0363
ABDE	$\cdot 0084$	\mathbf{AB}	-0.0405
CDE	$\cdot 0077$	\mathbf{CE}	-0.0582
D	$\cdot 0058$	\mathbf{A}	-0.1184
\mathbf{AE}	.0016	\mathbf{E}	-0.1398

In their analysis of variance, Davies *et al.* pool the 3- and 4-factor interactions for an error term. They do not find the pooled 2-factor interaction mean square to be significant but note that CE is significant at the 5 % point on a standard *F*-test. However, on the basis of a Bartlett test, they find that the significance of CE does *not* reach the 5 % level.

The overall statistical configuration of the 30 unconfounded effects may be evaluated against a background of a null hypothesis that these are a sample of size 30 from a normal population. Computing the W statistic for this hypothesis one finds a value of 0.8812, which is substantially below the tabulated 1% point for the null distribution.

One may now ask whether the sample of size 25 remaining after removal of the 5 main effects terms has a normal configuration. The corresponding value of W is 0.9326, which is above the 10% point of the null distribution.

To investigate further whether the 2-factor interactions taken alone may have a nonnormal configuration due to one or more 2-factor interactions which are statistically 'too large', the W statistic may be computed for the ten 2-factor effects. This gives

$$W = 0.9465,$$

which is well above the 50 % point, for n = 10.

Similarly, the 15 combined 3 and 4-factor interactions may be examined from the same point of view. The W value is 0.9088, which is just above the 10% value of the null distribution.

Thus this analysis, combined with an inspection of the ordered contrasts, would suggest that the A, C and E main effects are real, while the remaining effects may be regarded as a random normal sample. This analysis does not indicate any reason to suspect a real CE effect based only on the statistical evidence.

The partitioning employed in this latter analysis is of course valid since the criteria employed are independent of the observations *per se*.

In the situation of this example, the sign of the contrasts is of course arbitrary and hence their distributional configuration should be evaluated on the basis of the absolute values, as in half-normal plotting (see Daniel, 1959). Thus, the above procedure had better be carried out using a half-normal version of the W test if that were available.

5. Comparison with other tests for normality

To evaluate the W procedure relative to other tests for normality an empirical sampling investigation of comparative properties was conducted, using a range of populations and sample sizes. The results of this study are given in Shapiro & Wilk (1964*a*), only a brief extract is included in the present paper.

The null distribution used for the study of the W test was determined as described above. For all other statistics, except the χ^2 goodness of fit, the null distribution employed was determined empirically from 500 samples. For the χ^2 test, standard χ^2 table values were used. The power results for all procedures and alternate distributions were derived from 200 samples.

Empirical sampling results were used to define null distribution percentage points for a combination of convenience and extensiveness in the more exhaustive study of which the results quoted here are an extract. More exact values have been published by various authors for some of these null percentage points. Clearly one employing the Kolmogorov-Smirnov procedure, for example, as a statistical method would be well advised to employ the most accurate null distribution information available. However, the present power results are intended only for indicative interest rather than as a definitive description of a procedure, and uncertainties or errors of several percent do not materially influence the comparative assessment.

608

Table 7 gives results on the power of a 5 % test for samples of size 20 for each of nine test procedures and for fifteen non-normal populations. The tests shown in Table 7 are: W; chi-squared goodness of fit (χ^2); standardized 3rd and 4th moments, $\sqrt{b_1}$ and b_2 ; Kolmogorov–Smirnov (KS) (Kolmogorov, 1933); Cramér–Von Mises (CVM) (Cramér, 1928); a weighted, by F/(1-F), Cramér–Von Mises (WCVM), where F is the cumulative distribution function (Anderson & Darling, 1954); Durbin's version of the Kolmogorov–Smirnov procedure (D) (Durbin, 1961); range/standard deviation (u) (David *et al.* 1954).

Denulation				_							
title	R	R	W	ν^2	./ b .	Ь	KS	CVM	WCVM	р	21
01010	$\sqrt{P_1}$	P_2	,,	λ	$\sqrt{v_1}$	v_2	1.7.0	0111		D	u
$\chi^{2}(1)$	2.83	$15 \cdot 0$	0.98	0.94	0.89	0.53	0.44	0.44	0.54	0.87	0.10
$\chi^{2}(2)$	$2 \cdot 00$	9.0	·84	$\cdot 33$	$\cdot 74$	$\cdot 34$	$\cdot 27$	$\cdot 23$	$\cdot 27$	$\cdot 42$	·08
χ^{2} (4)	1.41	6.0	$\cdot 50$	$\cdot 13$	·49	$\cdot 27$	·18	$\cdot 13$	·16	$\cdot 15$	·06
χ^2 (10)	0.89	$4 \cdot 2$	$\cdot 29$	·07	$\cdot 29$	$\cdot 19$	·11	·10	·11	·07	·06
Non-cent. χ^2	0.73	$3 \cdot 7$	$\cdot 59$	$\cdot 10$	$\cdot 50$	$\cdot 20$	$\cdot 19$	·16	·18	·20	·10
Log normal	6.19	113.9	$\cdot 93$	$\cdot 95$	·89	$\cdot 58$	·44	·48	$\cdot 62$	$\cdot 82$	·06
Cauchy			·88	·41	•77	·81	$\cdot 45$	$\cdot 55$	•98	$\cdot 85$	$\cdot 56$
Uniform	0	1.8	$\cdot 23$	·11	•00	$\cdot 29$	·13	•09	·10	•08	·38
Logistic	0	$4 \cdot 2$	·08	·06	$\cdot 12$	•06	·06	•03	$\cdot 05$	$\cdot 05$	·07
Beta (2, 1) -	-0.57	$2 \cdot 4$	$\cdot 35$	·08	·08	$\cdot 13$	•08	·10	$\cdot 12$	$\cdot 12$	·23
La Place	0	$6 \cdot 0$	$\cdot 25$	$\cdot 17$	$\cdot 25$	$\cdot 27$	·07	·07	$\cdot 29$	$\cdot 16$	·19
Poisson (1)	1.00	4 ·0	•99	1.00	$\cdot 26$	·11	$\cdot 55$	$\cdot 22$	$\cdot 31$	1.00	$\cdot 35$
$\begin{array}{c} \text{Binomial,} \\ (4, 0.5) \end{array}$	0	$2 \cdot 5$	•71	1.00	$\cdot 02$	·03	·38	$\cdot 15$	·17	1.00	$\cdot 20$
T(5, 2.4)	0.79	$2 \cdot 2$	$\cdot 55$	·14	$\cdot 24$	·20	$\cdot 23$	·20	$\cdot 22$		
T(10, 3.1)	0.97	$2 \cdot 8$	·89	$\cdot 32$	$\cdot 51$	$\cdot 24$	$\cdot 32$	·30	· 3 0		

Table 7.	Empirical	power.	for 5%	, tests fo	r selected	alternative	distributions;
			sample	s all of	size 20		

* Variates from this distribution $T(a, \lambda)$ are defined by $y = aR^{\lambda} - (1-R)^{\lambda}$, where R is uniform (0, 1) (Hastings, Mosteller, Tukey & Winsor, 1947). Also note that (a) the non-central χ^2 distribution has degrees of freedom 16, non-centrality parameter 1; (b) the beta distribution has p = 2, q = 1 in standard notation; (c) the Poisson distribution has expectation 1.

In using the non-scale and non-origin invariant tests the mean and variance of the hypothesized normal was taken to agree with the known mean and variance of the alternative distribution. For the Cauchy the mode and intrinsic accuracy were used.

The results of Table 7 indicate that the W test is comparatively quite sensitive to a wide range of non-normality, even with samples as small as n = 20. It seems to be especially sensitive to asymmetry, long-tailedness and to some degree to short-tailedness.

The χ^2 procedure shows good power against the highly skewed distributions and reasonable sensitivity to very long-tailedness.

The $\sqrt{b_1}$ test is quite sensitive to most forms of skewness. The b_2 statistic can usefully augment $\sqrt{b_1}$ in certain circumstances. The high power of $\sqrt{b_1}$ for the Cauchy alternative is probably due to the fact that, though the Cauchy is symmetric, small samples from it will often be asymmetric because of the very long-tailedness of the distribution.

The KS test has similar properties to that of the CVM procedure, with a few exceptions. In general the WCVM test has higher power than KS or CVM, especially in the case of longtailed alternatives, such as the Cauchy, for which WCVM had the highest power of all the statistics examined.

The use of Durbin's procedure improves the KS sensitivity only in the case of highly

 χ^2

0.07

.09

·04

 $\cdot 12$

·10

·11

 $\cdot 21$

 $\cdot 26$

skewed and discrete alternatives. Against the Cauchy, the D test responds, like $\sqrt{b_1}$, to the asymmetry of small samples.

The u test gives good results against the uniform alternative and this is representative of its properties for short-tailed symmetric alternatives.

The χ^2 test has the disadvantages that the number and character of class intervals used is arbitrary, that all information concerning sign and trend of discrepancies is ignored and that, for small samples, the number of cells must be very small. These factors might explain some of the lapses of power for χ^2 indicated in Table 7. Note that for almost all cases the power of W is higher than that of χ^2 .

As expected, the $\sqrt{b_1}$ test is in general insensitive in the case of symmetric alternatives as illustrated by the uniform distribution. Note that for all cases, except the logistic, $\sqrt{b_1}$ power is dominated by that of the W test.

Table 8. The effect of mis-specification of parameters

al parameters	5	_		Tests	
	Sample				
$\sigma \mu /$	σ size	\mathbf{KS}	$\mathbf{C}\mathbf{M}$	WCVM	\mathbf{D}

0.06

 $\cdot 12$

·05

.08

 $\cdot 07$

·14

 $\cdot 21$

 $\cdot 21$

Actu

1.2

1.3

1.0

1.2

1.3

1.0

 $1 \cdot 2$

1.3

0.00

·00

 $\cdot 15$

 $\cdot 15$

 $\cdot 15$

·30

·30

·30

 $\mathbf{20}$

 $\mathbf{20}$

 $\mathbf{20}$

20

20

 $\mathbf{20}$

 $\mathbf{20}$

 $\mathbf{20}$

μ 0·00

.00

 $\cdot 15$

 $\cdot 18$

 $\cdot 195$

 $\cdot 30$

·36

·39

(n = 20, 5%)	b test, assumed	parameters	are	$\mu = 0,$	$\sigma = 1$	L)
--------------	-----------------	------------	-----	------------	--------------	----

0.08

 $\cdot 12$

.08

·16

 $\cdot 12$

·26

 $\cdot 34$

 $\cdot 38$

0.18

 $\cdot 29$

·10

 $\cdot 24$

 $\cdot 31$

 $\cdot 31$

·46

 $\cdot 55$

0.09

·10

.03

·11

·12

 $\cdot 07$

 $\cdot 16$

.19

The b_2 test is not sensitive to asymmetry. Its performance was inferior to that of W except in the cases of the Cauchy, uniform, logistic and Laplace for which its performance was equivalent to that of W.

Both the KS and CVM tests have quite inferior power properties. With sporadic exception in the case of very long-tailedness this is true also of the WCVM procedure. The D procedure does improve on the KS test but still ends up with power properties which are not as good as other test statistics, with the exceptions of the discrete alternatives. (In addition, the D test is laborious for hand computation.)

The *u* statistic shows very poor sensitivity against even highly skewed and very longtailed distributions. For example, in the case of the $\chi^2(1)$ alternative, the *u* test has power of 10 % while even the KS test has a power of 44 % and that for *W* is 98 %. While the *u* test shows interesting sensitivity for uniform-like departures from normality, it would seem that the types of non-normality that it is usually important to identify are those of asymmetry and of long-tailedness and outliers.

The reader is referred to David *et al.* (1954, pp. 488–90) for a comparison of the power of the b_2 , u and Geary's (1935) 'a' (mean deviation/standard deviation) tests in detecting departure from normality in symmetrical populations. Using a Monte Carlo technique, they found that Geary's statistic (which was not considered here) was possibly more effective than either b_2 or u in detecting long-tailedness.

The test statistics considered above can be put into two classes. Those which are valid

for composite hypotheses and those which are valid for simple hypotheses. For the simple hypotheses procedures, such as χ^2 , KS, CVM, WCVM and D, the parameters of the null distribution must be pre-specified. A study was made of the effect of small errors of specification on the test performance. Some of the results of this study are given in Table 8. The apparent power in the cases of mis-specification is comparable to that attained for these procedures against non-normal alternatives. For example, for $\mu/\sigma = 0.3$, WCVM has apparent power of between 0.31 and 0.55 while its power against $\chi^2(2)$ is only 0.27.

6. Discussion and concluding remarks

$6 \cdot 1$. Evaluation of test

As a test for the normality of complete samples, the W statistic has several good features namely, that it may be used as a test of the composite hypothesis, that is very simple to compute once the table of linear coefficients is available and that the test is quite sensitive against a wide range of alternatives even for small samples (n < 20). The statistic is responsive to the nature of the overall configuration of the sample as compared with the configuration of expected values of normal order statistics.

A drawback of the W test is that for large sample sizes it may prove awkward to tabulate or approximate the necessary values of the multipliers in the numerator of the statistic. Also, it may be difficult for large sample sizes to determine percentage points of its distribution.

The W test had its inception in the framework of probability plotting. The formal use of the (one-dimensional) test statistic as a methodological tool in evaluating the normality of a sample is visualized by the authors as a supplement to normal probability plotting and not as a substitute for it.

6.2. Extensions

It has been remarked earlier in the paper that a modification of the present W statistic may be defined so as to be usable with incomplete samples. Work on this modified W^* statistic will be reported elsewhere (Shapiro & Wilk, 1965b).

The general viewpoint which underlies the construction of the W and W^* tests for normality can be applied to derive tests for other distributional assumptions, e.g. that a sample is uniform or exponential. Research on the construction of such statistics, including necessary tables of constants and percentage points of null distributions, and on their statistical value against various alternative distributions is in process (Shapiro & Wilk, 1964b). These statistics may be constructed so as to be scale and origin invariant and thus can be used for tests of composite hypothesis.

It may be noted that many of the results of $\$2\cdot3$ apply to any symmetric distribution.

The W statistic for normality is sensitive to outliers, either one-sided or two-sided. Hence it may be employed as part of an inferential procedure in the analysis of experimental data as suggested in Example 3 of §4.

The authors are indebted to Mrs M. H. Becker and Mrs H. Chen for their assistance in various phases of the computational aspects of the paper. Thanks are due to the editor and referees for various editorial and other suggestions.

References

- AITKEN, A. C. (1935). On least squares and linear combination of observations. *Proc. Roy. Soc. Edin.* 55, 42–8.
- ANDERSON, T. W. & DARLING, D. A. (1954). A test for goodness of fit. J. Amer. Statist. Ass. 49, 765-9.
- CRAMÉR, H. (1928). On the composition of elementary errors. Skand. Aktuar. 11, 141-80.
- DANIEL, C. (1959). Use of half-normal plots in interpreting factorial two level experiments. *Techno*metrics, 1, 311-42.
- DAVID, H. A., HARTLEY, H. O. & PEARSON, E. S. (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation. *Biometrika*, 41, 482–3.
- DAVIES, O. L. (ed). (1956). Design and Analysis of Industrial Experiments. London: Oliver and Boyd. DURBIN, J. (1961). Some methods of constructing exact tests. Biometrika, 48, 41-55.
- GEARY, R. C. (1935). The ratio of the mean deviation to the standard deviation as a test of normality. Biometrika, 27, 310-32.
- HARTER, H. L. (1961). Expected values of normal order statistics. Biometrika, 48, 151-65.
- HASTINGS, C., MOSTELLER, F., TUKEY, J. & WINSOR, C. (1947). Low moments for small samples: a comparative study of order statistics. Ann. Math. Statist. 18, 413–26.
- HOGG, R. V. & CRAIG, A. J. (1956). Sufficient statistics in elementary distribution theory. Sankyā, 17, 209-16.
- JOHNSON, N. L. (1949). Systems of frequency curves generated by methods of translation. *Biometrika*, **36**, 149–76.
- KENDALL, M. G. (1948). The Advanced Theory of Statistics, 1. London: C. Griffin and Co.
- KENDALL, M. G. & STUART, A. (1961). The Advanced Theory of Statistics, 2. London: C. Griffin and Co.
- KOLMOGOROV, A. N. (1933). Sulla determinazione empirica di une legge di distribuzione. G. Ist. Att.uari, 83-91.
- LLOYD, E. H. (1952). Least squares estimation of location and scale parameters using order statistics. Biometrika, **39**, 88-95.
- PEARSON, E. S. & STEPHENS, M. A. (1964). The ratio of range to standard deviation in the same normal sample. *Biometrika*, **51**, 484-7.
- PLACKETT, R. L. (1958). Linear estimation from censored data. Ann. Math. Statist. 29, 131-42.
- RAND CORPORATION (1955). A Million Random Digits with 100,000 Normal Deviates.
- SARHAN, A. E. & GREENBERG, B. G. (1956). Estimation of location and scale parameters by order statistics from singly and double censored samples. Part I. Ann. Math. Statist. 27, 427–51.
- SHAPIRO, S. S. (1964). An analysis of variance test for normality (complete samples). Unpublished Ph.D. Thesis, Rutgers—The State University.
- SHAPIRO, S. S. & WILK, M. B. (1964a). A comparative study of various tests for normality. Unpublished manuscript. Invited paper, Amer. Stat. Assoc, Annual Meeting, Chicago, Illinois, December 1964.
- SHAPIRO, S. S. & WILK, M. B. (1964b). Tests for the exponential and uniform distributions. (Unpublished manuscript.)
- SHAPIRO, S. S. & WILK, M. B. (1965*a*). Testing the normality of several samples. (Unpublished manuscript).
- SHAPIRO, S. S. & WILK, M. B. (1965b). An analysis of variance test for normality (incomplete samples). (Unpublished manuscript.)
- SNEDECOR, G. W. (1946). Statistical Methods, 4th edition. Ames: Iowa State College Press.