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 BY S. S. SHAPIRO AND M. B. WILK

 General Electric Co. and Bell Telephone Laboratories, Inc.

 1. INTRODUCTION

 The main intent of this paper is to introduce a new statistical procedure for testing a

 complete sample for normality. The test statistic is obtained by dividing the square of an

 appropriate linear combination of the sample order statistics by the usual symmetric

 estimate of variance. This ratio is both scale and origin invariant and hence the statistic

 is appropriate for a test of the composite hypothesis of normality.

 Testing for distributional assumptions in general and for normality in particular has been

 a major area of continuing statistical research-both theoretically and practically. A

 possible cause of such sustained interest is that many statistical procedures have been

 derived based on particular distributional assumptions-especially that of normality.

 Although in many cases the techniques are more robust than the assumptions underlying

 them, still a knowledge that the underlying assumption is incorrect may temper the use

 and application of the methods. Moreover, the study of a body of data with the stimulus

 of a distributional test may encourage consideration of, for example, normalizing trans-

 formations and the use of alternate methods such as distribution-free techniques, as well as
 detection of gross peculiarities such as outliers or errors.

 The test procedure developed in this paper is defined and some of its analytical properties

 described in ? 2. Operational information and tables useful in employing the test are detailed

 in ? 3 (which may be read independently of the rest of the paper). Some examples are given

 in ? 4. Section 5 consists of an extract from an empirical sampling study of the comparison of

 the effectiveness of various alternative tests. Discussion and concluding remarks are given
 in ?6.

 2. THE W TEST FOR NORMALITY (COMPLETE SAMPLES)

 2 1. Motivation and early work

 This study was initiated, in part, in an attempt to summarize formally certain indications

 of probability plots. In particular, could one condense departures from statistical linearity
 of probability plots into one or a few 'degrees of freedom' in the manner of the application
 of analysis of variance in regression analysis?

 In a probability plot, one can consider the regression of the ordered observations on the

 expected values of the order statistics from a standardized version of the hypothesized

 distribution-the plot tending to be linear if the hypothesis is true. Hence a possible method

 of testing the distributional assumptionis by means of an analysis of variance type procedure.

 Using generalized least squares (the ordered variates are correlated) linear and higher-order
 models can be fitted and an F-type ratio used to evaluate the adequacy of the linear fit.

 t Part of this research was supported by the Office of Naval Research while both authors were at
 Rutgers University.
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 592 S. S. SHAPIRO AND M. B. WILK

 This approach was investigated in preliminary work. While some promising results

 were obtained, the procedure is subject to the serious shortcoming that the selection of the

 higher-order model is, practically speaking, arbitrary. However, research is continuing

 along these lines.

 Another analysis of variance viewpoint which has been investigated by the present

 authors is to compare the squared slope of the probability plot regression line, which under

 the normality hypothesis is an estimate of the population variance multiplied by a constant,

 with the residual mean square about the regression line, which is another estimate of the

 variance. This procedure can be used with incomplete samples and has been described

 elsewhere (Shapiro & Wilk, 1965b).

 As an alternative to the above, for complete samples, the squared slope may be com-

 pared with the usual symmetric sample sum of squares about the mean which is independent

 of the ordering and easily computable. It is this last statistic that is discussed in the re-

 mainder of this paper.

 2-2. Derivation of the W statistic

 Let M' = (in1, i2, ...,Mn) denote the vector of expected values of standard normal
 order statistics, and let V = (vi>) be the corresponding n x n covariance matrix. That is, if
 xi< x2 < ... xn denotes an ordered random sample of size n from a normal distribution with
 mean 0 and variance 1, then

 E(x)i = mni (i = 1, 2, * *, n),

 and cov(xi,xj)=vij (i,j= 1,2,.. ., n).

 Let y' = (Yi' , Yn) denote a vector of ordered random observations. The objective is
 to derive a test for the hypothesis that this is a sample from a normal distribution with

 unknown mean 4a and unknown variance o2.

 Clearly, if the {yi} are a normal sample then yi may be expressed as

 Yi = It+ rxi (i-=1, 2, ..., n).

 It follows from the generalized least-squares theorem (Aitken, 1935; Lloyd, 1952) that the

 best linear unbiased estimates of It and o are those quantities that minimize the quadratic
 form (y-jtl--om)' V-1 (y- II-o-m), where 1' = (1, 1, ..., 1). These estimates are, respec-
 tively, _ Vn' -F (Ml' - lm') V-1y

 1 'V-11 lm' V-lm (1 'V-1M)2

 a'V-1(lm'-Ml') V-ly
 and 1 'V lm'V-1m (1'V-'m)2

 For symmetric distributions, 1' V-lm = 0, and hence

 /t2=-n Yi= y, and Cm= 'VI
 n

 Let S2 -E (y_9)2
 1

 denote the usual symmetric unbiased estimate of (n - 1) -2.

 The W test statistic for normality is defined by

 R4--2 2 (a'y)2 (n 2 2n
 02S= ~ ~= = a (iyh2 C2S2 S2 S2 i= Ji~=1

This content downloaded from 213.227.88.32 on Wed, 09 Jan 2019 21:21:39 UTC
All use subject to https://about.jstor.org/terms



 An analysis of variance test for normality 593

 where R2 = M' V-1m,

 2 = M V-1 V-'M,

 a = (a1,... an)= (M'V--V-lM)2
 and b= - /

 Thus, b is, up to the normalizing constant C, the best linear unbiased estimate of the slope

 of a linear regression of the ordered observations, yi, on the expected values, mi, of the stand-
 ard normal order statistics. The constant C is so defined that the linear coefficients are

 normalized.

 It may be noted that if one is indeed sampling from a normal population then the numer-

 ator, b2, and denominator, S2, of W are both, up to a constant, estimating the same quantity,
 namely o.2. For non-normal populations, these quantities would not in general be estimating

 the same thing. Heuristic considerations augmented by some fairly extensive empirical

 sampling results (Shapiro & Wilk, 1964a) using populations with a wide range of 4fl1 and

 A2 values, suggest that the mean values of W for non-null distributions tends to shift
 to the left of that for the null case. Further it appears that the variance of the null dis-

 tribution of W tends to be smaller than that of the non-null distribution. It is likely
 that this is due to the positive correlation between the numerator and denominator for a

 normal population being greater than that for non-normal populations.

 Note that the coefficients {ai} are just the normalized 'best linear unbiased' coefficients
 tabulated in Sarhan & Greenberg (1956).

 2 3. Some analytical properties of W

 LEMMA 1. W is scale and origin invariant

 Proof. This follows from the fact that for normal (more generally symmetric) distribu-

 tions, -ai = ani+l

 COROLLARY 1. W has a distribution which depends only on the sanmple size n, for samples
 from a normal distribution.

 COROLLARY 2. W is statistically independent of S2 and of y, for samples from a normal
 distribution.

 Proof. This follows from the fact that - and S2 are sufficient for It and o.2 (Hogg & Craig,
 1956).

 COROLLARY 3. EWr = Eb2r/ES2r, for any r.

 LEMMA 2. The maximum value of W is 1.

 Proof. Assume yO0 since W is origin invariant by Lemma 1. Hence

 W = [E aiy.]2/E Y2.
 i i

 Since ( ai y)2 < >a4 E yi - yi
 i i i i

 because , a4 = a'a - 1, by definition, then W is bounded by 1. This maximum is in fact

 achieved when yi = yai, for arbitrary y.

 LEMMA 3. The minimum value of W is na2/(n-1).
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 594 S. S. SHAPIRO AND M. B. WILK

 Proof.t (Due to C. L. Mallows.) Since W is scale and origin invariant, it suffices to con-
 n

 sider the maximization of y2 subject to the constraints Eyi = 0, 2aiyi = 1. Since this
 *=1

 is a convex region and Zy4 is a convex function, the maximum of the latter must occur at
 one of the (n - 1) vertices of the region. These are

 (n-1 -1 1
 nal nal na1

 ( n-2 (n-2) -2 -2 i

 n(a1+ a2)n(a1+a2)' n(a1+a2)'* n(al +a2)

 (n(al+i.+an-1)'n(al+..'.+an- -'""n(al+...+an-)
 It can now be checked numerically, for the values of the specific coefficients {ai}, that the

 n

 maximum of E y2 occurs at the first of these points and the corresponding minimum value
 i=1

 of W is as given in the Lemma.

 LEMMA 4. The half and first moments of W are given by

 B 2rP{l(n - 1)}
 EWQ = RcrF(-n) <2

 and EW= R2(R2 +

 where R2 = m' V-1m, and c2 = m' V7- V-1m.

 Proof. Using Corollary 3 of Lemma 1,

 EWi = Eb/ES and EW = Eb2/ES2.

 Now, ES = o2r ()/(n2 ) and ES2 = (n -) C.

 From the general least squares theorem (see e.g. Kendall & Stuart, vol. ii (1961)),

 B2 B2
 Eb = - Ea=

 C C

 B4 B4
 and Eb2- = C -2 C2 {var (a) + (E)2}

 = ,,2R2 (R2 + 1)/C2,

 since var (a) - 2/M' V-1M = o-2/B2, and hence the results of the lemma follow.
 Values of these moments are shown in Fig. 1 for sample sizes n = 3(1) 20.

 LEMMA 5. A joint distribution involving W is defined by

 h .** 6n-2) = KW4(1 - W)l(n-) cos2-4 . COS Onco

 over a region T on which the 6 's and W are not independent, and where K is a constant.

 t Lemma 3 was conjectured intuitively and verified by certain numerical studies. Subsequently
 the above proof was given by C. L. Mallows.
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 An analysis of variance test for normality 595

 Proof. Consider an orthogonal transformation B such that y = Bu, where

 n n

 l= yi/Vn and u2 =J aiyi = b
 i= i-l

 The ordered yi's are distributed as

 n! ( 2exp (_1SCi))l (a < yl < ..< yn < 00)

 After integrating out, u1, the joint density for u2, ...,n iS

 K*exP(212 exp ui

 over the appropriate region T*. Changing to polar co-ordinates such that

 M2= p sin 01, etc,

 and then integrating over p, yields the joint density of 01, Oan-2 as

 K** coSn-3 6l cos n-4 02... cos On-3
 over some region T**.

 From these various transformations

 W b2 U2 _ s in2 01 i2l =- - p2 sin21 = sin2 6o
 S2 np 2

 i=l1

 from which the lemma follows. The 6i's and W are not independent, they are restricted
 in the sample space T.

 098

 E(WI)

 096

 0O*94 - _ _

 0-92__ _

 0^90
 3 5 7 9 11 13 15 17 19 21

 Sample size, n

 Fig. 1. Moments of W, E(Wr), n = 3(1)20, r = , 1.

 COROLLARY 4. For n = 3, the density of W is

 -(T-W)-I W-1 3 <
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 596 S. S. SHAPIRO AND M. B. WILK

 Note that for n = 3, the W statistic is equivalent (up to a constant multiplier) to the

 statistic (range/standard deviation) advanced by David, Hartley & Pearson (1954) and
 the result of the corollary is essentially given by Pearson & Stephens (1964).

 It has not been possible, for general n, to integrate out of the 6i's of Lemma 5 to obtain
 an explicit form for the distribution of W. However, explicit results have also been given

 for n = 4, Shapiro (1964).

 2*4. Approximations associated with the W test

 The {ai} used in the W statistic are defined by

 n

 a- Em:,viiIC (j = 1,2, ...,n),
 j=1

 where mj, v j and C have been defined in ? 2 2. To determine the ai directly it appears necessary
 to know both the vector of means m and the covariance matrix V. However, to date, the
 elements of V are known only up to samples of size 20 (Sarhan & Greenberg, 1956). Various
 approximations are presented in the remainder of this section to enable the use of W for

 samples larger than 20.

 By definition,
 (M'V-1 MVV-

 a= 7-1 T7_1,b)-! C?

 is such that a'a = 1. Let a* = m'V-1, then C2 = a*'a*. Suggested approximations are

 ai 1 = 2m (i = 2, 3, ..., n-

 ( (ln)

 and t = = I (l,{ n+1)} (n 20),
 and al aln.- - ~P{l(n+l)}

 A comparison of a* (the exact values) and a* for various values of i * 1 and n = 5, 10,

 15, 20 is given in Table 1. (Note ai =-an-i+l.) It will be seen that the approximation is
 generally in error by less than 1 %, particularly as n increases. This encourages one to trust

 the use of this approximation for n > 20. Necessary values of the mi for this approximation
 are available in Harter (1961).

 Table 1. Comparison of Ia* l and I a* I = 1 2mni , for selected values of
 i(t+ 1) and n

 nX 2 3 4 5 8 10

 5 Exact 1.014 0.0 - -
 Approx. 0.990 0 0

 10 Exact 2 035 1.324 0 757 0 247
 Approx. 2 003 1 312 0752 0 245 - -

 1.5 Exact 2 530 1 909 1 437 1.036 0.0
 Approx. 2 496 1 895 1 430 1 031 0.0

 20 Exact 2 849 2 277 1 850 1 496 0 631 0-124
 Approx. 2 815 2 262 1*842 1 491 0630 0 124
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 An analys8is of variance test for normality 597

 A comparison of a2 anda 2 for n = 6(1) 20 is given in Table 2. While the errors of this

 approximation are quite small for n < 20, the approximation and true values appear to
 cross over at n = 19. Further comparisons with other approximations, discussed below,

 suggested the changed formulation of al for n > 20 given above.

 Table 2. Comparison of a2 and a2

 n Exact Approximate n Exact Approximate

 6 0*414 0*426 13 0*287 0-283
 7 *388 *392 14 *276 *272
 8 *366 *365 15 *265 *261
 9 *347 *343 16 *256 *254
 10 *329 *324 17 *247 *245
 11 *314 *308 18 *239 *237
 12 *300 *295 19 *231 *231

 20 *224 *226

 C2 R2

 70 35 -3--

 60 3C0 -

 C2=-72 +4.08n

 50 25

 4R2 -241+1 98n
 40 20

 30 1 5~~~~~~~

 20 1 0

 1 0 5

 0 0

 0 2 4 6 8 10 12 14 16 18 20

 Sample size, n

 Fig. 2. Plot of C2 = m'V-1 V-lm and 12 = m'V-1m as functions of the sample size n.

 What is required for the W test are the normalized coefficients {ai}. Thus &2 is directly
 usable but the * (i = 2, ..., n-1), must be normalized by division by C = (in'V-VmV-m).

 A plot of the values of C2 and of R2 = m' V-m as a function of n is given in Fig. 2. The

 linearity of these may be summarized by the following least-squares equations:

 C2 = - 2.722 + 4*083n,

 which gave a regression mean square of 7331-6 and a residual mean square of 0-0186, and

 R2 = -2-411+1*981n,

 with a regression mean square of 1725-7 and a residual mean square of 0-0016.
 38 Biom. 52
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 598 S. S. SHAPIRO AND M. B. WILK

 These results encourage the use of the extrapolated equations to estimate c2 and R2
 for higher values of n.

 A comparison can now be made between values of c2 from the extrapolation equation
 n

 and from a a2, using
 a2 n-I

 a*2= 2 a, a2.

 For the case n = 30, these give values of 119-77 and 120-47, respectively. This concordance
 of the independent approximations increases faith in both.

 Plackett (1958) has suggested approximations for the elements of the vector a and R2.
 While his approximations are valid for a wide range of distributions and can be used with
 censored samples, they are more complex, for the normal case, than those suggested above.
 For the normal case his approximations are

 * =nm [F(m.j.)-F(m._1)] (j=2,3,...,n-1),

 = {M(f(Mj)2 + mjf(mj) -f(mj) + m,[F(m,+?) - F(m1)]} (j = 1),

 where F(m1) = cumulative distribution evaluated at mj,
 f(mj) = density function evaluated at m,

 and a* = -4*

 Plackett's approximation to R2 is

 R2= 2 1 +m3f(ml) +mlf(ml) - 2F(m) + I}

 Plackett's da approximations and the present a' approximations are compared with the
 exact values, for sample size 20, in Table 3. In addition a consistency comparison of the
 two approximations is given for sample size 30. Plackett's result for a1 (n = 20) was the
 only case where his approximation was closer to the true value than the simpler approxima-

 tions suggested above. The differences in the two approximations for a, were negligible,
 being less than 0-5 %. Both methods give good approximations, being off no more than
 three units in the second decimal place. The comparison of the two methods for n = 30
 shows good agreement, most of the differences being in the third decimal place. The largest
 discrepancy occurred for i = 2; the estimates differed by six units in the second decimal
 place, an error of less than 2 %.

 The two methods of approximating R2 were compared for n = 20. Plackett's method
 gave a value of 36-09, the method suggested above gave a value of 37-21 and the true
 value was 37-26.

 The good practical agreement of these two approximations encourages the belief that
 there is little risk in reasonable extrapolations for n > 20. The values of constants, for
 n > 20, given in ? 3 below, were estimated from the simple approximations and extrapola-
 tions described above.

 As a further internal check the values of an, an-1 and an-4 were plotted as a function of
 n for n = 3(1) 50. The plots are shown in Fig. 3 which is seen to be quite smooth for each
 of the three curves at the value n = 20. Since values for n < 20 are 'exact' the smooth
 transition lends credence to the approximations for n > 20.
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 An analysis of variance test for normality 599

 Table 3. Comparison of approximate values of a* m m'V-1

 n i Present approx. Exact Plackett

 20 1 - 4-223 - 4-2013 -4-215
 2 -2x815 - 2x8494 - 2x764
 3 - 2x262 - 2x2765 -2x237
 4 - 1x842 -1x8502 -1-820
 5 - 1*491 -1*4960 -1-476
 6 -1*181 -1*1841 -1P169
 7 -0*897 - 08990 - 0-887
 8 -0*630 - 0*6314 - 0-622
 9 -0374 -0-3784 - 0 370
 10 -0*124 - 0*1243 - 04123

 30 1 -4*655 - -4671
 2 -3*231 - 3-170
 3 -2*730 - -2768
 4 2-357 - 2-369
 5 -2*052 - -2013
 6 -1*789 - -1760
 7 -1553 - 1-528
 8 -1-338 -- -1*334
 9 - 1*137 - -1132
 10 -0*947 - -0-941
 11 - 0-765 - -0759
 12 -0-589 - -0582
 13 - 0*418 - 0*413
 14 - 0*249 - -0*249
 15 - 0*083 - -0082

 0.5

 0~3 ______

 0 5 10 15 20 25 30 35 40 45 50

 Sample size, n

 Fig. 3. ai plotted as a function of sample size, n = 2(1) 50, for
 iz_ = ,n-1,n-4(n> 8).

 38-
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 600 S. S. SHAPIRO AND M. B. WILK

 1.0

 0*8

 0-7

 0*6

 p 05

 0 70 0 75 0-80 0-85 0.90 0 95 1 00

 W

 Fig. 4. Empirical O.D.F. of W for n = 5, 10, 15, 20, 35, 50.

 1-00 _____n 1 1 21____

 090

 08

 w~~~~~

 1080

 995 %f 95X9
 0.95

 0*70 ~ 5

 0685

 0 5 10 15 20 25 30 35 40 45 50

 Sample size, n

 Fig. 5. Selected empirical percentage points of W, n = 3(1)50.
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 An analysis of variance test for normality 601

 Table 4. Some theoretical moments (jti) and Monte Carlo moments (/) of W

 n 6~i /t l #3 2 /3//2 4//2

 3 0 9549 0 9547 0-9135 0-9130 0-005698 - 0 5930 2-3748
 4 *9486 *9489 *9012 *9019 *005166 - *8944 3*7231
 5 *9494 *9491 *9026 *9021 *004491 - *8176 7-8126

 6 0-9521 0-9525 0-9072 0-9082 0 003390 - 1-1790 5-4295
 7 *9547 *9545 *9123 *9120 *002995 - 1-3229 6-4104
 8 *9574 *9575 *9174 *9175 *002470 - 1-3841 7-1092
 9 *9600 *9596 *9221 *9215 *002293 - 1-5987 8-4482
 10 *9622 *9620 *9264 *9260 *001972 1-6655 9-2812

 11 0-9643 0-9639 0 9303 0 9295 0-001717 -1o7494 11-0547
 12 *9661 *9661 *9337 *9338 *001483 -1o7744 11-9185
 13 *9678 *9678 -9369 *9369 *001316 1-7581 13-0769
 14 *9692 *9693 *9398 *9399 *001168 -1o9025 14-0568
 15 *9706 -9705 *9424 *9422 *001023 - 1-8876 16-7383

 16 0-9718 0-9717 0-9447 0.9445 0*000964 - 1-7968 17-6669
 17 *9730 *9730 -9470 -9470 *000823 - 1-9468 22-1972
 18 *9741 *9741 *9491 *9492 *000810 - 2-1391 24-7776
 19 *9750 *9750 -9508 -9509 *000711 - 2-1305 29-7333
 20 *9757 *9760 *9523 *9527 *000651 - 2-2761 32-5906

 21 0 9771 - 0 9549 0 000594 -2-2827 36-0382
 22 *9776 *9558 *000568 - 2-3984 44-5617
 23 - *9782 -9570 *000504 -2-1862 40 7507
 24 -9787 -- .9579 *000504 - 2-3517 43-4926
 25 *9789 - 9584 *000458 - 2-3448 46-3318

 26 - 0-9796 - 0-9598 0 000421 - 2-4978 58-9446
 27 - *9801 *9607 *000404 - 2-5903 60-5200
 28 - *9805 -9615 *000382 -2-6964 64 1702
 29 - *9810 - *9624 *000369 - 2-6090 68-9591
 30 - *9811 *9626 *000344 - 2-7288 71-7714

 31 - 0-9816 0-9636 0*000336 -2-7997 77.4744
 32 *9819 -9642 *000326 - 2-6900 76-8384
 33 *9823 *9650 *000308 - 3-0181 93-2496
 34 *9825 - *9654 *000293 - 3.0166 100-4419
 35 *9827 - 9658 *000268 - 2-8574 108-5077

 36 - 0-9829 - 0-9662 0 000264 - 2-7965 91-7985
 37 *9833 - *9670 *000253 -3-1566 120 0005
 38 *9837 *9677 *000235 - 3-0679 118-2513
 39 *9837 -9678 *000239 - 3-3283 134 3110
 40 *9839 *9682 *000229 -3-1719 136 4787

 41 0-9840 - 0 9684 0-000227 - 3 0740 129 9604
 42 *9844 *9691 *000212 -3-2885 136 3814
 43 - *9846 - *9694 *000196 - 3-2646 151-7350
 44 - *9846 - 9695 *000193 - 3 0803 140 2724
 45 *9849 - *9701 *000192 - 3 1645 137-2297

 46 - 0-9850 0 9703 0-000184 -3-3742 176-0635
 47 - *9854 - *9710 *000170 - 3.3353 179 2792
 48 *9853 *9708 *000179 -3*2972 173-6601
 49 *9855 *9712 *000165 -3 2810 183-9433
 50 *9855 - *9714 *000154 - 3-3240 212-4279
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 602 S. S. SHAPIRO AND M. B. WILK

 2-5. Approximation to the distribution of W

 The complexity in the domain of the joint distribution of W and the angles {Oi} in Lemma 5
 necessitates consideration of an approximation to the null distribution of W. Since only

 the first and second moments of normal order statistics are, practically, available, it follows

 that only the one-half and first moments of W are known. Hence a technique such as the

 Cornish-Fisher expansion cannot be used.

 In the circumstance it seemed both appropriate and efficient to employ empirical samp-

 ling to obtain an approximation for the null distribution.

 Accordingly, normal random samples were obtained from the Rand Tables (Rand Corp.

 (1955)). Repeated values of W were computed for n = 3(1) 50 and the empirical percentage

 points determined for each value of n. The number of samples, m, employed was as follows:

 for n = 3(1)20, M= 5000,

 n = 21(1) 50, m= [1nO0001

 Fig. 4 gives the empirical C.D.F.'S for values of n = 5, 10, 15, 20, 35, 50. Fig. 5

 gives a plot of the 1, 5, 10, 50, 90, 95, and 99 empirical percentage points of W for

 n = 3(1)50.

 A check on the adequacy of the sampling study is given by comparing the empirical

 one-half and the first moments of the sample with the corresponding theoretical moments

 of W for n = 3(1) 20. This comparison is given in Table 4, which provides additional

 assurance of the adequacy of the sampling study. Also in Table 4 are given the sample

 variance and the standardized third and fourth moments for n = 3(1) 50.

 After some preliminary investigation, the SB system of curves suggested by Johnson

 (1949) was selected as a basis for smoothing the empirical null W distribution. Details of

 this procedure and its results are given in Shapiro & Wilk (1965 a). The tables of percentage

 points of W given in ? 3 are based on these smoothed sampling results.

 3. SUMMARY OF OPERATIONAL INFORMATION

 The objective of this section is to bring together all the tables and descriptions needed

 to execute the W test for normality. This section may be employed independently of

 notational or other information from other sections.

 The object of the W test is to provide an index or test statistic to evaluate the supposed

 normality of a complete sample. The statistic has been shown to be an effective measure

 of normality even for small samples (n < 20) against a wide spectrum of non-normal alter-
 natives (see ?5 below and Shapiro & Wilk (1964a)).

 The W statistic is scale and origin invariant and hence supplies a test of the composite

 null hypothesis of normality.

 To compute the value of W, given a complete random sample of size n, X1, X2, ...,Xw
 one proceeds as follows:

 (i) Order the observations to obtain an ordered sample yl , Y2 < ... < Yn.
 (ii) Compute

 n n

 S2 = ,(Xy~)2 EX(Xi-X)2.
 1 1
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 An analysis of variance test for normality 603

 (iii) (a) If n is even, n = 2k, compute

 b = E an-i+1(yn-+l-Yi)
 i= 1

 where the values of an_i 1 are given in Table 5.
 (b) If n is odd, n = 2k + 1, the computation is just as in (iii) (a), since ak+1 = 0 when

 n = 2k + 1. Thus one finds

 b = an(yn-Y1)? +* + ak+2(yk+2- Y),

 where the value of Yk+1' the sample median, does not enter the computation of b.
 (iv) Compute W = b2/S2.

 (v) 1, 2, 5, 10, 50, 90, 95, 98 and 99 % points of the distribution of W are given in Table 6.
 Small values of W are significant, i.e. indicate non-normality.

 (vi) A more precise significance level may be associated with an observed W value by

 using the approximation detailed in Shapiro & Wilk (1965a).

 Table 5. Coefficients {a-i+1} for the W test for normality,
 forn = 2(1)50.

 n 2 3 4 5 6 7 8 9 10
 i\
 1 07071 0-7071 06872 06646 06431 06233 0.6052 0.5888 05739
 2 - *0000 *1677 *2413 *2806 *3031 *3164 *3244 *3291
 3 - *0000 *0875 *1401 *1743 *1976 *2141
 4 - - 0000 *0561 *0947 *1224
 5 - - - 0000 *0399

 n 11 12 13 14 15 16 17 18 19 20
 i\
 1 0-5601 0*5475 0*5359 0*5251 0*5150 0-5056 0.4968 0.4886 0.4808 0.4734
 2 *3315 *3325 *3325 *3318 *3306 *3290 *3273 *3253 *3232 *3211
 3 *2260 *2347 *2412 *2460 *2495 *2521 *2540 *2553 *2561 *2565
 4 *1429 *1586 *1707 *1802 *1878 *1939 *1988 *2027 *2059 *2085
 5 *0695 *0922 *1099 *1240 *1353 *1447 *1524 *1587 *1641 *1686

 6 0.0000 0*0303 0.0539 0.0727 0-0880 0*1005 0-1109 0.1197 0*1271 0*1334
 7 - *0000 *0240 *0433 *0593 *0725 *0837 *0932 *1013
 8 - - - *0000 *0196 *0359 *0496 *0612 *0711
 9 - - - - 0000 *0163 *0303 *0422
 10 -- - - - - 0000 *0140

 n

 i\\ 21 22 23 24 25 26 27 28 29 30
 1 04643 0X4590 0X4542 0X4493 0X4450 0X4407 0X4366 0X4328 0X4291 0X4254
 2 *3185 *3156 *3126 *3098 *3069 *3043 *3018 *2992 *2968 *2944
 3 *2578 *2571 *2563 *2554 *2543 *2533 *2522 *2510 *2499 *2487
 4 *2119 *2131 *2139 *2145 *2148 *2151 *2152 *2151 *2150 *2148
 5 *1736 *1764 *1787 *1807 *1822 *1836 *1848 *1857 *1864 *1870

 6 0X1399 0X1443 0X1480 0X1512 0X1539 0X1563 0X1584 0X1601 0X1616 0X1630
 7 *1092 *1150 *1201 *1245 *1283 *1316 *1346 *1372 *1395 *1415
 8 *0804 *0878 *0941 *0997 *1046 *1089 *1128 *1162 *1192 *1219
 9 *0530 *0618 *0696 *0764 *0823 *0876 *0923 *0965 *1002 *1036
 10 *0263 *0368 *0459 *0539 *0610 *0672 *0728 *0778 *0822 *0862

 11 0X0000 0X0122 0X0228 0X0321 0X0403 0X0476 0-0540 0X0598 0-0650 0-0697
 12 - *0000 *0107 *0200 *0284 *0358 *0424 *0483 *0537
 13 - - - *0000 *0094 *0178 *0253 *0320 *0381
 14 - - - - - *0000 *0084 *0159 *0227
 15 - - - - - - 0000 *0076
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 Table 5. Coefficients {an-i+l} for the W test for normality,
 for n = 2(1) 50 (cont.)

 n

 iX 31 32 33 34 35 36 37 38 39 40
 1 0X4220 0X4188 0X4156 0X4127 0-4096 0X4068 0X4040 0X4015 0X3989 0X3964

 2 *2921 *2898 *2876 *2854 *2834 *2813 *2794 *2774 *2755 *2737

 3 *2475 *2463 *2451 *2439 *2427 *2415 *2403 *2391 *2380 *2368
 4 *2145 *2141 *2137 *2132 *2127 *2121 *2116 *2110 *2104 *2098
 5 *1874 *1878 *1880 *1882 *1883 *1883 *1883 *1881 *1880 *1878

 6 0X1641 0-1651 0X1660 0X1667 0X1673 0X1678 0-1683 0X1686 0*1689 0-1691
 7 *1433 *1449 *1463 *1475 *1487 *1496 *1505 *1513 *1520 *1526
 8 *1243 *1265 *1284 *1301 *1317 *1331 *1344 *1356 *1366 *1376

 9 *1066 *1093 *1118 *1140 *1160 *1179 *1196 *1211 *1225 *1237
 10 *0899 *0931 *0961 *0988 *1013 *1036 *1056 *1075 *1092 *1108

 11 0-0739 0-0777 0*0812 0-0844 0-0873 0*0900 0-0924 0*0947 0-0967 0*0986

 12 *0585 *0629 *0669 *0706 *0739 *0770 *0798 *0824 *0848 *0870
 13 *0435 *0485 *0530 *0572 *0610 *0645 *0677 *0706 *0733 *0759
 14 *0289 *0344 *0395 *0441 *0484 *0523 *0559 *0592 *0622 *0651
 15 *0144 *0206 *0262 *0314 *0361 *0404 *0444 *0481 *0515 *0546

 16 0*0000 0*0068 0-0131 0*0187 0*0239 0-0287 0*0331 0-0372 0-0409 0-0444
 17 - *0000 *0062 *0119 *0172 *0220 *0264 *0305 *0343
 18 - - - *0000 *0057 *0110 *0158 *0203 *0244
 19 - - - *0000 *0053 *0101 *0146
 20 - - - - *0000 *0049

 n
 41 42 43 44 45 46 47 48 49 50

 1 0X3940 0X3917 0X3894 0X3872 0X3850 0X3830 0-3808 0X3789 0X3770 0X3751
 2 *2719 *2701 *2684 *2667 *2651 *2635 *2620 *2604 *2589 *2574
 3 *2357 *2345 *2334 *2323 *2313 *2302 *2291 *2281 *2271 *2260
 4 *2091 *2085 *2078 *2072 *2065 *2058 *2052 *2045 *2038 *2032
 5 *1876 *1874 *1871 *1868 *1865 *1862 *1859 *1855 *1851 *1847

 6 0X1693 0X1694 0X1695 0X1695 0X1695 0-1695 0-1695 0*1693 0-1692 0-1691
 7 *1531 *1535 *1539 *1542 *1545 *1548 *1550 *1551 *1553 *1554
 8 *1384 *1392 *1398 *1405 *1410 *1415 *1420 *1423 *1427 *1430
 9 *1249 *1259 *1269 *1278 *1286 *1293 *1300 *1306 *1312 *1317
 10 *1123 *1136 *1149 *1160 *1170 *1180 *1189 *1197 *1205 *1212

 11 0*1004 0*1020 0*1035 0*1049 0*1062 0*1073 0*1085 0*1095 0*1105 0-1113
 12 *0891 *0909 *0927 *0943 *0959 *0972 *0986 *0998 *1010 *1020
 13 *0782 *0804 *0824 *0842 *0860 *0876 *0892 *0906 *0919 *0932
 14 *0677 *0701 *0724 *0745 *0765 *0783 *0801 *0817 *0832 *0846
 15 *0575 *0602 *0628 *0651 *0673 *0694 *0713 *0731 *0748 *0764

 16 0*0476 0-0506 0*0534 0-0560 000584 0*0607 0-0628 0-0648 0-0667 0-0685
 17 *0379 *0411 *0442 *0471 *0497 *0522 *0546 *0568 *0588 *0608
 18 *0283 *0318 *0352 *0383 *0412 *0439 *0465 *0489 *0511 *0532
 19 *0188 *0227 *0263 *0296 *0328 *0357 *0385 *0411 *0436 *0459
 20 *0094 *0136 *0175 *0211 *0245 *0277 *0307 *0335 *0361 *0386

 21 0.0000 0*0045 0*0087 0*0126 0*0163 0*0197 0-0229 0-0259 0-0288 0-0314
 22 - 0000 *0042 *0081 *0118 *0153 *0185 *0215 *0244
 23 - - *0000 *0039 *0076 *0111 *0143 *0174
 24 - -- - *0000 '0037 *0071 *0104
 25 - *0000 *0035
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 Table 6. Percentage points of the W test* for n = 3(1) 50

 Level

 n 0*01 0'02 0*05 0'10 0'50 0 90 0.95 0-98 0.99

 3 0 753 0-756 0-767 0-789 0.959 0.998 0.999 1 000 1 000
 4 *687 707 *748 *792 *935 *987 *992 *996 *997
 5 *686 *715 *762 *806 *927 *979 *986 *991 *993

 6 0-713 0*743 0-788 0.826 0-927 0974 0-981 0-986 0-989
 7 *730 *760 *803 *838 *928 *972 *979 *985 *988
 8 *749 *778 *818 *851 *932 *972 *978 *984 *987
 9 *764 *791 *829 *859 *935 *972 *978 *984 *986
 10 *781 *806 *842 *869 *938 *972 *978 *983 *986

 11 0-792 0.817 0.850 0-876 0940 0973 0-979 0.984 0-986
 12 *805 *828 *859 *883 *943 *973 *979 *984 *986
 13 *814 *837 *866 *889 *945 *974 *979 *984 *986
 14 *825 *846 *874 *895 *947 *975 *980 *984 *986
 15 *835 *855 *881 *901 -950 *975 *980 *984 *987

 16 0-844 0.863 0.887 0.906 0-952 0-976 0.981 0.985 0-987
 17 *851 *869 *892 *910 *954 *977 *981 *985 *987
 18 *858 *874 *897 *914 *956 *978 *982 *986 *988
 19 *863 *879 *901 *917 .957 *978 *982 *986 *988
 20 *868 *884 -905 *920 *959 *979 *983 *986 *988

 21 0.873 0-888 0-908 0-923 0.960 0.980 0-983 0.987 0.989
 22 *878 *892 *911 *926 *961 *980 *984 *987 *989
 23 *881 *895 *914 *928 *962 *981 *984 *987 *989
 24 *884 *898 *916 -930 *963 *981 *984 *987 *989
 25 *888 *901 *918 *931 *964 *981 *985 *988 *989

 26 0891 0 904 0-920 0 933 0-965 0-982 0-985 0.988 0-989
 27 *894 *906 *923 *935 *965 *982 *985 *988 -990
 28 *896 *908 *924 *936 *966 *982 *985 *988 -990
 29 *898 *910 *926 *937 *966 *982 *985 *988 990
 30 *900 *912 *927 .939 *967 *983 *985 *988 *900

 31 0-902 0-914 0-929 0 940 0.967 0.983 0-986 0.988 0.990
 32 *904 *915 *930 *941 -968 *983 *986 *988 -990
 33 *906 *917 *931 *942 *968 *983 *986 *989 *990
 34 *908 *919 *933 *943 *969 *983 *986 *989 *990
 35 *910 *920 *934 *944 *969 *984 *986 *989 *990

 36 0912 0-922 0*935 0945 0970 0.984 0.986 0-989 0990
 37 *914 *924 *936 *946 -970 *984 *987 *989 -990
 38 *916 *925 *938 *947 *971 *984 *987 *989 *990
 39 *917 *927 *939 *948 *971 *984 *987 *989 *991
 40 *919 *928 *940 *949 *972 *985 *987 *989 *991

 41 0-920 0.929 0-941 0-950 0-972 0.985 0-987 0.989 0.991
 42 *922 *930 *942 *951 *972 *985 *987 *989 *991
 43 *923 *932 *943 *951 *973 *985 *987 990 *991
 44 *924 *933 *944 *952 *973 *985 *987 *990 *991
 45 *926 *934 *945 *953 *973 *985 *988 -990 *991

 46 0927 0935 0945 0953 0974 0.985 0-988 0.990 0991
 47 *928 *936 *946 *954 *974 *985 *988 *990 *991
 48 *929 *937 *947 *954 *974 *985 *988 *990 *991
 49 *929 .937 *947 *955 *974 *985 *988 *990 *991
 50 *930 *938 *947 *955 *974 *985 *988 *990 *991

 e Based on fitted Johnson (1949) SB approximation, see Shapiro & Wilk (1965a) for details.
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 To illustrate the process, suppose a sample of 7 observations were obtained, namely

 xi = 6, x2 = 1,x3 = -4, x4 = 8, x5 = -2, x6 = 5, x7 = 0.
 (i) Ordering, one obtains

 Yi = -4, Y2 =-2, y3 = 0,y4 = 1, y5 = 5, Y6 = 6~ Y7 = 8.

 (ii) S2 = Jy4 - 17 (Eyi)2 =146 -28 = 118.

 (iii) From Table 5, under n = 7, one obtains

 a7 = 0-6233, a6 = 0-3031, a5 = 01401, a4 = 0 0000.

 Thus b = 0.6233(8 + 4) + 0*3031(6 + 2) + 0*1401(5-0) = 10*6049.

 (iv) W = (10.6049)2/118 = 0 9530.

 (v) Referring to Table 6, one finds the value of W to be substantially larger than the

 tabulated 50 % point, which is 0-928. Thus there is no evidence, from the W test, of non-
 normality of this sample.

 4. EXAMPLES

 Example 1. Snedecor (1946, p. 175), makes a test of normality for the following sample of

 weights in pounds of 11 men: 148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236.

 The W statistic is found to be 079 which is just below the 1 % point of the null distribu-
 tion. This agrees with Snedecor's approximate application of the Vb1 statistic test.

 Example, 2. Kendall (1948, p. 194) gives an extract of 200 'random sampling numbers'

 from the Kendall-Babington Smith, Tracts for Computers No. 24. These were totalled, as

 number pairs, in groups of 10 to give the following sample of size 10: 303, 338, 406, 457,

 461, 469, 474, 489, 515, 583.

 The W statistic in this case has the value 0 9430, which is just above the 50 % point of the
 null distribution.

 Example 3. Davies et al. (1956) give an example of a 25 experiment on effects of five

 factors on yields of penicillin. The 5-factor interaction is confounded between 2 blocks.

 Omitting the confounded effect the ordered effects are:

 C 0-0958 ABC 0 0002
 BC *0333 CD - 0-0026
 ACDE *0293 B - 0*0036
 BCE *0246 BD - 0-0042

 ACD *0206 BCD -0-0113
 ABCE *0194 ABE - 0-0139
 DE *0191 ABD -0-0211
 BE *0182 AC - 0-0333
 BDE *0173 AD - 0-0341
 ADE *0132 ACE - 0.0363
 BCDE *0102 ABCD - 0-0363
 ABDE *0084 AB - 0-0402
 CDE *0077 CE - 0-0582
 D *0058 A -0-1184
 AE *0016 E -0-1398

 In their analysis of variance, Davies et al. pool the 3- and 4-factor interactions for an error
 term. They do not find the pooled 2-factor interaction mean square to be significant but

 note that CE is significant at the 5 % point on a standard F-test. However, on the basis of a
 Bartlett test, they find that the significance of CE does not reach the 5 % level.
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 The overall statistical configuration of the 30 unconfounded effects may be evaluated

 against a background of a null hypothesis that these are a sample of size 30 from a normal

 population. Computing the W statistic for this hypothesis one finds a value of 0-8812,

 which is substantially below the tabulated 1 % point for the null distribution.
 One may now ask whether the sample of size 25 remaining after removal of the 5 main

 effects terms has a normal configuration. The corresponding value of W is 0-9326, which is

 above the 10 % point of the null distribution.
 To investigate further whether the 2-factor interactions taken alone may have a non-

 normal configuration due to one or more 2-factor interactions which are statistically

 'too large', the W statistic may be computed for the ten 2-factor effects. This gives

 W= 0-9465,

 which is well above the 50 % point, for n = 10.
 Similarly, the 15 combined 3 and 4-factor interactions may be examined from the same

 point of view. The W value is 0-9088, which is just above the 10 % value of the null distribu-
 tion.

 Thus this analysis, combined with an inspection of the ordered contrasts, would suggest

 that the A, C and E main effects are real, while the remaining effects may be regarded as a

 random normal sample. This analysis does not indicate any reason to suspect a real CE

 effect based only on the statistical evidence.

 The partitioning employed in this latter analysis is of course valid since the criteria

 employed are independent of the observations per se.

 In the situation of this example, the sign of the contrasts is of course arbitrary and hence

 their distributional configuration should be evaluated on the basis of the absolute values,

 as in half-normal plotting (see Daniel, 1959). Thus, the above procedure had better be

 carried out using a half-normal version of the W test if that were available.

 5. COMPARISON WITH OTHER TESTS FOR NORMALITY

 To evaluate the W procedure relative to other tests for normality an empirical sampling

 investigation of comparative properties was conducted, using a range of populations and

 sample sizes. The results of this study are given in Shapiro & Wilk (1964a), only a brief

 extract is included in the present paper.

 The null distribution used for the study of the W test was determined as described

 above. For all other statistics, except the %2 goodness of fit, the null distribution employed

 was determined empirically from 500 samples. For the x2 test, standard %2 table values

 were used. The power results for all procedures and alternate distributions were derived

 from 200 samples.

 Empirical sampling results were used to define null distribution percentage points for

 a combination of convenience and extensiveness in the more exhaustive study of which the

 results quoted here are an extract. More exact values have been published by various

 authors for some of these null percentage points. Clearly one employing the Kolmogorov-

 Smirnov procedure, for example, as a statistical method would be well advised to employ

 the most accurate null distribution information available. However, the present power

 results are intended only for indicative interest rather than as a definitive description of a

 procedure, and uncertainties or errors of several percent do not materially influence the

 comparative assessment.
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 Table 7 gives results on the power of a 5 % test for samples of size 20 for each of nine test
 procedures and for fifteen non-normal populations. The tests shown in Table 7 are: W;

 chi-squared goodness of fit (x2); standardized 3rd and 4th moments, Vb. and b2; Kolmogorov-
 Smirnov (KS) (Kolmogorov, 1933); Cramer-Von Mises (CVM) (Cramer, 1928); a weighted,

 by F/(1-F), Cramer-Von Mises (WCVM), where F is the cumulative distribution function

 (Anderson & Darling, 1954); Durbin's version of the Kolmogorov-Smirnov procedure (D)

 (Durbin, 1961); range/standard deviation (u) (David et al. 1954).

 Table 7. Empirical power for 5 0% tests for selected alternative distributions;
 samples all of size 20

 Population

 title V/h 32 W x2 Vbl b2 KS CVM WCVM D u
 x2(l) 2-83 15-0 0X98 0*94 0X89 0 53 0 44 044 0*54 0X87 0.10
 X2 (2) 2-00 9*0 *84 *33 *74 *34 *27 *23 *27 *42 *08
 X2 (4) 141 6.0 *50 13 *49 *27 *18 *13 *16 *15 *06
 X2 (10) 089 4.2 *29 07 *29 19 *11 *10 *11 *07 *06
 Non-cent. x2 0X73 3X7 *59 *10 50 *20 *19 *16 *18 *20 *10
 Log normal 6419 113X9 *93 *95 *89 *58 *44 *48 *62 *82 *06
 Cauchy - - 88 *41 *77 *81 *45 *55 *98 *85 *56
 Uniform 0 1-8 *23 *11 00 *29 *13 09 *10 08 *38
 Logistic 0 4.2 *08 -06 *12 *06 *06 -03 *05 -05 -07
 Beta (2, 1) -0-57 2-4 *35 *08 *08 *13 *08 *10 -12 *12 *23
 La Place 0 6-0 *25 *17 *25 *27 -07 -07 *29 *16 *19
 Poisson (1) 1900 4 0 *99 1900 *26 *11 *55 *22 *31 1 00 *35
 Binomial, 0 2-5 *71 1900 *02 -03 *38 *15 *17 1.00 *20
 (4, 0.5)
 *T(5, 2.4) 0 79 2-2 *55 *14 *24 *20 *23 *20 *22 -
 *T(10, 3.1) 0*97 2-8 *89 *32 *51 *24 *32 *30 *30 - -

 * Variates from this distribution T(a, A) are defined by y = aRl -_(1- R)A, where R is uniform
 (0, 1) (Hastings, Mosteller, Tukey & Winsor, 1947). Also note that (a) the non-central x2 distribution
 has degrees of freedom 16, non-centrality parameter 1; (b) the beta distribution has p = 2, q = 1 in
 standard notation; (c) the Poisson distribution has expectation 1.

 In using the non-scale and non-origin invariant tests the mean and variance of the

 hypothesized normal was taken to agree with the known mean and variance of the alter-

 native distribution. For the Cauchy the mode and intrinsic accuracy were used.

 The results of Table 7 indicate that the W test is comparatively quite sensitive to a wide

 range of non-normality, even with samples as small as n = 20. It seems to be especially

 sensitive to asymmetry, long-tailedness and to some degree to short-tailedness.

 The %2 procedure shows good power against the highly skewed distributions and reason-

 able sensitivity to very long-tailedness.

 The Vbl test is quite sensitive to most forms of skewness. The b2 statistic can usefully
 augment Vb, in certain circumstances. The high power of Vbl for the Cauchy alternative is
 probably due to the fact that, though the Cauchy is symmetric, small samples from it will

 often be asymmetric because of the very long-tailedness of the distribution.

 The KS test has similar properties to that of the CVM procedure, with a few exceptions.

 In general the WCVM test has higher power than KS or CVM, especially in the case of long-

 tailed alternatives, such as the Cauchy, for which WCVM had the highest power of all the

 statistics examined.

 The use of Durbin's procedure improves the KS sensitivity only in the case of highly
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 skewed and discrete alternatives. Against the Cauchy, the D test responds, like Vb1,
 to the asymmetry of small samples.

 The u test gives good results against the uniform alternative and this is representative of

 its properties for short-tailed symmetric alternatives.

 The %2 test has the disadvantages that the number and character of class intervals used

 is arbitrary, that all information concerning sign and trend of discrepancies is ignored and

 that, for small samples, the number of cells must be very small. These factors might explain

 some of the lapses of power for x2 indicated in Table 7. Note that for almost all cases the
 power of W is higher than that of x2.

 As expected, the Ibj6 test is in general insensitive in the case of symmetric alternatives

 as illustrated by the uniform distribution. Note that for all cases, except the logistic,

 Vb, power is dominated by that of the W test.

 Table 8. The effect of mis-specification of parameters

 (n = 20, 5 % test, assumed parameters are ,c = 0, o = 1)

 Actual parameters Tests
 Sample

 ,u a'r ,u/ size KS CM WCVM D x2

 0 00 1-2 0*00 20 0*06 0-08 0*18 0 09 0*07
 *00 1-3 *00 20 *12 *12 *29 *10 *09
 *15 1.0 *15 20 *05 *08 *10 *03 *04
 *18 1.2 *15 20 *08 *16 *24 *11 *12
 *195 1*3 *15 20 -07 *12 *31 *12 *10
 30 1.0 *30 20 *14 *26 *31 *07 *11
 *36 1.2 *30 20 *21 *34 *46 *16 *21
 *39 1F3 30 20 *21 *38 *55 *19 *26

 The b2 test is not sensitive to asymmetry. Its performance was inferior to that of W

 except in the cases of the Cauchy, uniform, logistic and Laplace for which its performance

 was equivalent to that of W.

 Both the KS and CVM tests have quite inferior power properties. With sporadic exception

 in the case of very long-tailedness this is true also of the WCVM procedure. The D procedure
 does improve on the KS test but still ends up with power properties which are not as good
 as other test statistics, with the exceptions of the discrete alternatives. (In addition, the
 D test is laborious for hand computation.)

 The u statistic shows very poor sensitivity against even highly skewed and very long-

 tailed distributions. For example, in the case of the x2(1) alternative, the u test has power
 of 10 % while even the KS test has a power of 44 % and that for W is 98 %. While the u test
 shows interesting sensitivity for uniform-like departures from normality, it would seem
 that the types of non-normality that it is usually important to identify are those of asym-
 metry and of long-tailedness and outliers.

 The reader is referred to David et al. (1954, pp. 488-90) for a comparison of the power of

 the b2, u and Geary's (1935) 'a' (mean deviation/standard deviation) tests in detecting

 departure fromi normality in symmetrical populations. Using a Monte Carlo technique, they
 found that Geary's statistic (which was not considered here) was possibly more effective
 than either b2 or u in detecting long-tailedness.

 The test statistics considered above can be put into two classes. Those which are valid
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 for composite hypotheses and those which are valid for simple hypotheses. For the simple

 hypotheses procedures, such as x2, KS, CVM, WCVM and D, the parameters of the null
 distribution must be pre-specified. A study was made of the effect of small errors of specifica-

 tion on the test performance. Some of the results of this study are given in Table 8. The

 apparent power in the cases of mis-specification is comparable to that attained for these

 procedures against non-normal alternatives. For example, for lu/o- = 03, WCVM has
 apparent power of between 0-31 and 0 55 while its power against %2 (2) is only 0-27.

 6. DisCUSSION AND CONCLUDING REMARKS

 6- 1. Evaluation of test

 As a test for the normality of complete samples, the W statistic has several good features-

 namely, that it may be used as a test of the composite hypothesis, that is very simple to

 compute once the table of linear coefficients is available and that the test is quite sensitive

 against a wide range of alternatives even for small samples (n < 20). The statistic is re-

 sponsive to the nature of the overall configuration of the sample as compared with the con-

 figuration of expected values of normal order statistics.

 A drawback of the W test is that for large sample sizes it may prove awkward to tabulate

 or approximate the necessary values of the multipliers in the numerator of the statistic.

 Also, it may be difficult for large sample sizes to determine percentage points of its dis-

 tribution.

 The W test had its inception in the framework of probability plotting. The formal use

 of the (one-dimensional) test statistic as a methodological tool in evaluating the normality

 of a sample is visualized by the authors as a supplement to normal probability plotting and

 not as a substitute for it.

 6 2. Extensions

 It has been remarked earlier in the paper that a modification of the present W statistic

 may be defined so as to be usable with incomplete samples. Work on this modified W*

 statistic will be reported elsewhere (Shapiro & Wilk, 1965b).

 The general viewpoint which underlies the construction of the W and W* tests for

 normality can be applied to derive tests for other distributional assumptions, e.g. that a

 sample is uniform or exponential. Research on the construction of such statistics, including

 necessary tables of constants and percentage points of null distributions, and on their

 statistical value against various alternative distributions is in process (Shapiro & Wilk,

 1964b). These statistics may be constructed so as to be scale and origin invariant and thus

 can be used for tests of composite hypothesis.

 It may be noted that many of the results of ? 2-3 apply to any symmetric distribution.
 The W statistic for normality is sensitive to outliers, either one-sided or two-sided.

 Hence it may be employed as part of an inferential procedure in the analysis of experimental

 data as suggested in Example 3 of ?4.

 The authors are indebted to Mrs M. H. Becker and Mrs H. Chen for their assistance in

 various phases of the computational aspects of the paper. Thanks are due to the editor

 and referees for various editorial and other suggestions.
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